Construction of dynamics in one-dimensional systems of statistical mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 2, pp. 248-258
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well known that in one-dimensional systems the microcanonical, small canonical, and
grand canonical distributions have the same thermodynamic limit. This limit can be regarded
as a measure on the phase space of an infinite system of particles. Under the assumption
that the binary interaction potential has compaet support, it is shown that one can find a one-
parametric group of transformations in the phase space that preserve this measure and are
related in a natural manner to the infinite system of Hamiltonian equations that describe the
motion of the particles. This result has been previously proved by Lanford under the assumption that the potential has bounded modulus and finite range.
@article{TMF_1972_11_2_a11,
author = {Ya. G. Sinai},
title = {Construction of dynamics in one-dimensional systems of statistical mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {248--258},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a11/}
}
TY - JOUR AU - Ya. G. Sinai TI - Construction of dynamics in one-dimensional systems of statistical mechanics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 248 EP - 258 VL - 11 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a11/ LA - ru ID - TMF_1972_11_2_a11 ER -
Ya. G. Sinai. Construction of dynamics in one-dimensional systems of statistical mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 2, pp. 248-258. http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a11/