Hydrodynamic Hamiltonian for a nonideal Bose gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 2, pp. 236-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A functional integral method developed earlier is used to find the hydrodynamic Hamiltonian of a nonideal Bose gas and to construct a perturbation theory that is free of divergences at small energies and momenta. The kinetic equations at low temperatures are considered. The coefficient of first viscosity is calculated in quadratures.
@article{TMF_1972_11_2_a10,
     author = {V. N. Popov},
     title = {Hydrodynamic {Hamiltonian} for a nonideal {Bose} gas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {236--247},
     year = {1972},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a10/}
}
TY  - JOUR
AU  - V. N. Popov
TI  - Hydrodynamic Hamiltonian for a nonideal Bose gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 236
EP  - 247
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a10/
LA  - ru
ID  - TMF_1972_11_2_a10
ER  - 
%0 Journal Article
%A V. N. Popov
%T Hydrodynamic Hamiltonian for a nonideal Bose gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 236-247
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a10/
%G ru
%F TMF_1972_11_2_a10
V. N. Popov. Hydrodynamic Hamiltonian for a nonideal Bose gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 2, pp. 236-247. http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a10/

[1] N. N. Bogolyubov, Izv. AN SSSR, ser. fiz., 11 (1947), 77 | MR

[2] L. D. Landau, ZhETF, 11 (1941), 592 | MR

[3] N. N. Bogolyubov, D. N. Zubarev, ZhETF, 28 (1955), 129 | MR | Zbl

[4] V. N. Popov, TMF, 6 (1971), 90

[5] S. T. Belyaev, ZhETF, 34, 417 ; (1958), 433 | Zbl | Zbl

[6] N. M. Hugengoltz, D. Pines, Phys. Rev., 116 (1959), 489 | DOI | MR

[7] I. M. Khalatnikov, Vvedenie v teoriyu sverkhtekuchesti, «Nauka», 1965 | MR

[8] H. J. Maris, W. Massey, Phys. Rev. Lett., 25 (1970), 220 | DOI