Hydrodynamic Hamiltonian for a nonideal Bose gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 2, pp. 236-247
Cet article a éte moissonné depuis la source Math-Net.Ru
A functional integral method developed earlier is used to find the hydrodynamic Hamiltonian of a nonideal Bose gas and to construct a perturbation theory that is free of divergences at small energies and momenta. The kinetic equations at low temperatures are considered. The coefficient of first viscosity is calculated in quadratures.
@article{TMF_1972_11_2_a10,
author = {V. N. Popov},
title = {Hydrodynamic {Hamiltonian} for a nonideal {Bose} gas},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {236--247},
year = {1972},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a10/}
}
V. N. Popov. Hydrodynamic Hamiltonian for a nonideal Bose gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 2, pp. 236-247. http://geodesic.mathdoc.fr/item/TMF_1972_11_2_a10/
[1] N. N. Bogolyubov, Izv. AN SSSR, ser. fiz., 11 (1947), 77 | MR
[2] L. D. Landau, ZhETF, 11 (1941), 592 | MR
[3] N. N. Bogolyubov, D. N. Zubarev, ZhETF, 28 (1955), 129 | MR | Zbl
[4] V. N. Popov, TMF, 6 (1971), 90
[5] S. T. Belyaev, ZhETF, 34, 417 ; (1958), 433 | Zbl | Zbl
[6] N. M. Hugengoltz, D. Pines, Phys. Rev., 116 (1959), 489 | DOI | MR
[7] I. M. Khalatnikov, Vvedenie v teoriyu sverkhtekuchesti, «Nauka», 1965 | MR
[8] H. J. Maris, W. Massey, Phys. Rev. Lett., 25 (1970), 220 | DOI