Matrix elements of irreducible representations of the de Sitter group
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 69-77

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of recursion differential equations is derived for the matrix elements of all irreducibIe representations of the pseudo-orthogonal group of rotations $O(4,1)$. The infinite- and finite-dimensional representations are treated from a unified point of view. Matrix elements of a special form are calculated. An arbitrary matrix element can be calculated by means of these special elements.
@article{TMF_1972_11_1_a7,
     author = {I. M. Lizin and L. A. Shelepin},
     title = {Matrix elements of irreducible representations of the de {Sitter} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/}
}
TY  - JOUR
AU  - I. M. Lizin
AU  - L. A. Shelepin
TI  - Matrix elements of irreducible representations of the de Sitter group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 69
EP  - 77
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/
LA  - ru
ID  - TMF_1972_11_1_a7
ER  - 
%0 Journal Article
%A I. M. Lizin
%A L. A. Shelepin
%T Matrix elements of irreducible representations of the de Sitter group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 69-77
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/
%G ru
%F TMF_1972_11_1_a7
I. M. Lizin; L. A. Shelepin. Matrix elements of irreducible representations of the de Sitter group. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/