Matrix elements of irreducible representations of the de Sitter group
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 69-77
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A system of recursion differential equations is derived for the matrix elements of all irreducibIe representations of the pseudo-orthogonal group of rotations $O(4,1)$. The infinite-
and finite-dimensional representations are treated from a unified point of view. Matrix
elements of a special form are calculated. An arbitrary matrix element can be calculated
by means of these special elements.
			
            
            
            
          
        
      @article{TMF_1972_11_1_a7,
     author = {I. M. Lizin and L. A. Shelepin},
     title = {Matrix elements of irreducible representations of the de {Sitter} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/}
}
                      
                      
                    TY - JOUR AU - I. M. Lizin AU - L. A. Shelepin TI - Matrix elements of irreducible representations of the de Sitter group JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 69 EP - 77 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/ LA - ru ID - TMF_1972_11_1_a7 ER -
I. M. Lizin; L. A. Shelepin. Matrix elements of irreducible representations of the de Sitter group. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/