Matrix elements of irreducible representations of the de Sitter group
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 69-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of recursion differential equations is derived for the matrix elements of all irreducibIe representations of the pseudo-orthogonal group of rotations $O(4,1)$. The infinite- and finite-dimensional representations are treated from a unified point of view. Matrix elements of a special form are calculated. An arbitrary matrix element can be calculated by means of these special elements.
@article{TMF_1972_11_1_a7,
     author = {I. M. Lizin and L. A. Shelepin},
     title = {Matrix elements of irreducible representations of the de {Sitter} group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {69--77},
     year = {1972},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/}
}
TY  - JOUR
AU  - I. M. Lizin
AU  - L. A. Shelepin
TI  - Matrix elements of irreducible representations of the de Sitter group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 69
EP  - 77
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/
LA  - ru
ID  - TMF_1972_11_1_a7
ER  - 
%0 Journal Article
%A I. M. Lizin
%A L. A. Shelepin
%T Matrix elements of irreducible representations of the de Sitter group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 69-77
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/
%G ru
%F TMF_1972_11_1_a7
I. M. Lizin; L. A. Shelepin. Matrix elements of irreducible representations of the de Sitter group. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 69-77. http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a7/

[1] F. Gursey, Group theoretical concepts and methods in Elementary Particle Physics, Lectures of the Stambul summer school of theoretical physics, New-York–London, 1964 | MR

[2] T. O. Phillips, E. P. Wigner, Group theory and its applications, New-York–London, 1968

[3] C. Fronsdal, Rev. Mod. Phys., 37 (1965), 221 | DOI | MR | Zbl

[4] S. Ström, Arkiv fys., 30 (1965), 455 | MR | Zbl

[5] T. Wayne, Holman III, J. Math. Phys., 10 (1969), 1710 | DOI | MR

[6] S. Ström, Arkiv fys., 29 (1965), 467 | MR | Zbl

[7] I. A. Verdiev, L. A. Dadashev, YaF, 6 (1967), 1094

[8] S. Ström, Arkiv fys., 40 (1969), 1 | MR | Zbl

[9] S. Ström, Arkiv fys., 30 (1965), 445 | MR

[10] J. Diximier, Bull. Soc. Math. de France, 89 (1961), 9 | DOI | MR

[11] N. Kemmer, D. L. Pursey, S. A. Williams, J. Math. Phys., 9 (1968), 1224 | DOI | MR | Zbl

[12] I. M. Lizin, L. A. Shelepin, Preprint No 76, FIAN, 1970

[13] L. C. Biedenharn, J. Math. Phys., 2 (1961), 433 | DOI | MR | Zbl

[14] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, GITTL, 1958