Energy spectrum and damping of spin waves in a ferromagnet with uniaxial anisotropy
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 102-116
Voir la notice de l'article provenant de la source Math-Net.Ru
The ground state and magnon spectrum (excluding the region of magnetostatic oscillations)
are found for a ferrodieleetric sample in the form of a triaxial ellipsoid. The treatment is
based on a microscopic Hamiltonian of the ferrodielectric that takes into account isotropic
exchange, Zeeman and dipole-dipole interactions, and also the energy of uniaxial magnetic
anisotropy. The frequency of homogeneous precession of the magnetization is also determined. The Tyablikov–Bonch-Bruevich regular perturbation theory for the mass operator
is used to calculate the damping due to three-magnon processes induced by the anisotropy;
the line width of homogeneous ferromagnetic resonance is also estimated.
@article{TMF_1972_11_1_a10,
author = {V. I. Lymar' and Yu. G. Rudoi},
title = {Energy spectrum and damping of spin waves in a ferromagnet with uniaxial anisotropy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {102--116},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a10/}
}
TY - JOUR AU - V. I. Lymar' AU - Yu. G. Rudoi TI - Energy spectrum and damping of spin waves in a ferromagnet with uniaxial anisotropy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1972 SP - 102 EP - 116 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a10/ LA - ru ID - TMF_1972_11_1_a10 ER -
%0 Journal Article %A V. I. Lymar' %A Yu. G. Rudoi %T Energy spectrum and damping of spin waves in a ferromagnet with uniaxial anisotropy %J Teoretičeskaâ i matematičeskaâ fizika %D 1972 %P 102-116 %V 11 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a10/ %G ru %F TMF_1972_11_1_a10
V. I. Lymar'; Yu. G. Rudoi. Energy spectrum and damping of spin waves in a ferromagnet with uniaxial anisotropy. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 102-116. http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a10/