Selfadjointness of some representations of field algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 9-18
Cet article a éte moissonné depuis la source Math-Net.Ru
Essential selfadjointness is proved for the field algebra representations corresponding to the generalized free field and the field ${:}\varphi^2{:}(x)$, where $\varphi(x)$ is a free field.
@article{TMF_1972_11_1_a1,
author = {N. V. Borisov and A. N. Vasil'ev},
title = {Selfadjointness of some representations of field algebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {9--18},
year = {1972},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a1/}
}
N. V. Borisov; A. N. Vasil'ev. Selfadjointness of some representations of field algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 11 (1972) no. 1, pp. 9-18. http://geodesic.mathdoc.fr/item/TMF_1972_11_1_a1/
[1] H. J. Borchers, Nuovo Cim., 24 (1962), 214 | DOI | MR | Zbl
[2] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, t. 4, Fizmatgiz, 1964 | MR
[3] K. Maurin, Bull. Acad. Pol. Sci., Ser. sci. math., 11 (1963), 115 | MR | Zbl
[4] A. N. Vasilev, TMF, 2 (1970), 153 | MR
[5] A. N. Vasilev, TMF, 3 (1970), 24 | MR
[6] K. Moren, Metody gilbertova prostranstva, «Mir», 1965 | MR
[7] A. S. Wightman, L. Garding, Arkiv. fys., 28 (1964), 129 | MR
[8] H. J. Borchers, W. Zimmermann, Nuovo Cim., 45 (1966), 158 | DOI
[9] N. N. Bogolyubov, A. A. Logunov, I. T. Todorov, Osnovy aksiomaticheskogo podkhoda v kvantovoi teorii polya, «Nauka», 1969 | MR
[10] V. P. Gachok, DAN, 165 (1965), 506 | Zbl