On~the minimal interaction of $\pi$-mesons
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 3, pp. 329-337

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimal interaction principle is considered for pion-nucleon interactions in the framework of phenomenological Lagrangians that are invariant under the $SU(2)\times SU(2)$ chiral group. The nucleon is regarded as an elementary particle and as a composite particle. It is shown that the geometric approach in the method of the phenomenological Lagrangians enables one to go beyond the purely group approach and that it leads to additional restrictions on the phenomenologicaI constants. The relationship with the higher symmetries is manifested in this approach in an algebraic realization of the chiral symmetry for Weinberg's matrices $X_a(\lambda)$ of the axial-vector coupling.
@article{TMF_1972_10_3_a1,
     author = {D. V. Volkov and A. A. Zheltukhin and V. I. Tkach},
     title = {On~the minimal interaction of $\pi$-mesons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--337},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a1/}
}
TY  - JOUR
AU  - D. V. Volkov
AU  - A. A. Zheltukhin
AU  - V. I. Tkach
TI  - On~the minimal interaction of $\pi$-mesons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 329
EP  - 337
VL  - 10
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a1/
LA  - ru
ID  - TMF_1972_10_3_a1
ER  - 
%0 Journal Article
%A D. V. Volkov
%A A. A. Zheltukhin
%A V. I. Tkach
%T On~the minimal interaction of $\pi$-mesons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 329-337
%V 10
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a1/
%G ru
%F TMF_1972_10_3_a1
D. V. Volkov; A. A. Zheltukhin; V. I. Tkach. On~the minimal interaction of $\pi$-mesons. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 3, pp. 329-337. http://geodesic.mathdoc.fr/item/TMF_1972_10_3_a1/