Reduction to diagonal form of the Schrödinger operator in Fok space
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 249-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fok space formalism is used to construct operators of creation and annihilation of bound complexes that participate in the scattering process for a system of nonrelativistic quantum particles with binary interaction. These operators are eigenvectors of the operator $H$ of commutation with the Hamittonian $\Hat H$ of the system. The operator $\Hat H$ is expressed in terms of them quadratically.
@article{TMF_1972_10_2_a9,
     author = {I. M. Sigal},
     title = {Reduction to diagonal form of the {Schr\"odinger} operator in {Fok} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {249--258},
     year = {1972},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a9/}
}
TY  - JOUR
AU  - I. M. Sigal
TI  - Reduction to diagonal form of the Schrödinger operator in Fok space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 249
EP  - 258
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a9/
LA  - ru
ID  - TMF_1972_10_2_a9
ER  - 
%0 Journal Article
%A I. M. Sigal
%T Reduction to diagonal form of the Schrödinger operator in Fok space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 249-258
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a9/
%G ru
%F TMF_1972_10_2_a9
I. M. Sigal. Reduction to diagonal form of the Schrödinger operator in Fok space. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 249-258. http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a9/

[1] F. A. Berezin, Metod vtorichnogo kvantovaniya, Fizmatgiz, 1965 | MR | Zbl

[2] M. N. Hack, Nuovo Cim., 13 (1959), 231 | DOI | Zbl

[3] J. M. Jauch, Helv. Phys. Acta, 31 (1958), 661 | MR | Zbl

[4] L. D. Faddeev, Trudy MIAN SSSR, 69, 1963 | MR | Zbl

[5] F. A. Berezin, R. A. Minlos, L. D. Faddeev, Trudy IV Vsesoyuznogo matematicheskogo s'ezda, t. II, Leningrad, 1961