Scattering problem for radial Schr\" odinger equation with a slowly decreasing potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 238-248

Voir la notice de l'article provenant de la source Math-Net.Ru

The scattering problem for the Schrodinger equation with slowly decreasing potential is considered. Stationary wave operators $W_{\pm}(H,H_0)$ are constructed and their completeness is proved. It is shown that the operators $W_{\pm}(H,H_0)$ can also be defined as the limits $W_{\pm}(H,H_0)=\lim{t\to\pm\infty} \exp(itH)T_{\pm}\exp(-itH_0)$, $T_{\pm}$ being some operators, which do not depend on $t$, do not commute with $H_0$ and can be constructed explicity for the :given potential $q(x)$.The invariance principle for the wave operators $W_{\pm}$ is proved.
@article{TMF_1972_10_2_a8,
     author = {V. B. Matveev and M. M. Skriganov},
     title = {Scattering problem for radial {Schr\"} odinger equation with a slowly decreasing potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {238--248},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a8/}
}
TY  - JOUR
AU  - V. B. Matveev
AU  - M. M. Skriganov
TI  - Scattering problem for radial Schr\" odinger equation with a slowly decreasing potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 238
EP  - 248
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a8/
LA  - ru
ID  - TMF_1972_10_2_a8
ER  - 
%0 Journal Article
%A V. B. Matveev
%A M. M. Skriganov
%T Scattering problem for radial Schr\" odinger equation with a slowly decreasing potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 238-248
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a8/
%G ru
%F TMF_1972_10_2_a8
V. B. Matveev; M. M. Skriganov. Scattering problem for radial Schr\" odinger equation with a slowly decreasing potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 238-248. http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a8/