Current formalism in nonrelativistic quantum mechanics
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 223-237
Cet article a éte moissonné depuis la source Math-Net.Ru
Nonrelativistic quantum mechanics is studied in terms of currents. A functional representation of the current algebra is described and the current analog of Araki's theorem is obtained, i.e., a reconstruction of the Hamiltonian; perturbation theory is developed in the current formalism for the scattering problem.
@article{TMF_1972_10_2_a7,
author = {I. Ya. Aref'eva},
title = {Current formalism in nonrelativistic quantum mechanics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {223--237},
year = {1972},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a7/}
}
I. Ya. Aref'eva. Current formalism in nonrelativistic quantum mechanics. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 223-237. http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a7/
[1] R. F. Dashen, D. H. Sharp, Phys. Rev., 165 (1968), 1857 | DOI
[2] D. H. Sharp, Phys. Rev., 165 (1968), 1867 | DOI
[3] C. G. Callan, R. F. Dashen, D. H. Sharp, Phys. Rev., 165 (1968), 1883 | DOI
[4] H. Sugaware, Phys. Rev., 170 (1968), 1659 | DOI
[5] W. J. Pardee, L. Schessinger, J. Wright, Phys. Rev., 175 (1968), 2140 | DOI
[6] G. A. Goldin, Ph. D. Thesis, Princeton University, 1968; G. A. Goldin, J. Math. Phys., 12 (1971), 462 | DOI | MR
[7] J. Grodnik, D. H. Sharp, Phys. Rev., D1 (1970), 1531 | MR
[8] H. Araki, J. Math. Phys., 1 (1960), 492 | DOI | MR | Zbl
[9] T. Kato, Perturbation theory for linear operators, Springer-Verlag, 1966 | MR