Conditions for the existence of solutions of the equations of the type of the differential method equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 215-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equations of the type of the differential method equations are regarded as singular linear integral equations for the inelasticity coefficients under the assumption that the real parts of the phase shifts are known. For any finite system the existence of a unique solution (except for the CDD polynomial ambiguity) is proved under fairly weak restrictions on the dependence of the elements of the crossing matrix, $\beta_{ll'}(\omega,\omega')$ on $\omega$ and $\omega'$ ($l$, and $l'$ are the angular momenta and $\omega$ and $\omega'$ are the cms energies of the direct and crossed channels, respectively). Iris also shown that the condition that there exist a solution (in the class of continuous bounded functions) of the linear integral equation equivalent to an infinite system leads to the restriction $\beta_{ll'}(\omega,\omega')\to0$, $ll'\to\infty$, $\omega$, $\omega'\in[\omega_i,\infty)$, where $\omega_i$ is the inelastic threshold and to a behavior of the partial amplitude $T_l(\omega)\xrightarrow[l\to\infty]{}0$ $(\omega\in[\omega_i,\infty))$, characlteristic for strong interactions and which is usually deduced from the axiomatic $s\bigotimes t$ analyticity. Models with a short-range repulsion are discussed and allowance is made for inelasticity in the models of the differential method.
@article{TMF_1972_10_2_a6,
     author = {G. N. Chermalykh},
     title = {Conditions for the existence of solutions of the equations of the type of the differential method equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {215--222},
     year = {1972},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a6/}
}
TY  - JOUR
AU  - G. N. Chermalykh
TI  - Conditions for the existence of solutions of the equations of the type of the differential method equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 215
EP  - 222
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a6/
LA  - ru
ID  - TMF_1972_10_2_a6
ER  - 
%0 Journal Article
%A G. N. Chermalykh
%T Conditions for the existence of solutions of the equations of the type of the differential method equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 215-222
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a6/
%G ru
%F TMF_1972_10_2_a6
G. N. Chermalykh. Conditions for the existence of solutions of the equations of the type of the differential method equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 215-222. http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a6/

[1] G. F. Chew, S. Mandelstam, Phys. Rev., 119 (1960), 467 | DOI | MR | Zbl

[2] C. Lovelace, Nuovo Cim., 21 (1961), 305 | DOI | MR | Zbl

[3] D. V. Shirkov, Mezhdunarodnaya zimnyaya shkola teor. fiziki pri OIYaI, t. 2, Dubna, 1964, 117

[4] C. Lovelace, Nuovo Cim., 22 (1961), 102 | DOI | MR

[5] V. V. Serebryakov, D. V. Shirkov, Fortschr. Phys., 13 (1965), 227 | DOI | MR | Zbl

[6] D. V. Shirkov, V. V. Serebryakov, V. A. Mescheryakov, Dispersionnye teorii silnykh vzaimodeistvii pri nizkikh energiyakh, «Nauka», 1967; В. В. Серебряков, Д. В. Ширков, ЭЧАЯ, 1:1 (1970), 171

[7] L. F. Cook, C. E. Jones, Phys. Rev., 144 (1966), 1165 | DOI

[8] R. W. Childers, A. W. Martin, Phys. Rev., 171 (1968), 1540 | DOI

[9] V. V. Serebryakov, D. V. Shirkov, YaF, 6 (1967), 400

[10] V. I. Lendel, V. V. Serebryakov, D. V. Shirkov, YaF, 6 (1968), 625

[11] V. I. Lendel, V. V. Serebryakov, YaF, 7 (1968), 879

[12] J. Dilley, Nuovo Cim., 50A (1967), 837 ; 53A (1968), 465 ; P. R. Auvil, Phys. Lett., 25B (1967), 276 | DOI | DOI | MR | DOI

[13] D. Atkinson, J. Math. Phys., 8 (1969), 2281 | DOI | MR

[14] A. Ts. Amatuni, Nuovo Cim., 58A (1968), 321 | DOI

[15] A. V. Efremov, D. V. Shirkov, ZhETF, 42 (1962), 1344 | Zbl

[16] G. N. Chermalykh, Preprint ITP-69-89, Kiev, 1969

[17] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Fizmatgiz, 1962 | MR

[18] S. G. Mikhlin, Lineinye integralnye uravneniya, Fizmatgiz, 1959

[19] F. Riss, S. Nad, Lektsii po funktsionalnomu analizu, IL, 1954 | MR

[20] L. Castillejo, R. Dalitz, F. Dyson, Phys. Rev., 101 (1955), 543

[21] A. A. Logunov, Nguen Van Kheu, O. A. Khrustalev, Problemy teoreticheskoi fiziki, Sb., posvyaschennyi N. N. Bogolyubovu, «Nauka», 1969 | MR | Zbl

[22] A. Martin, Nuovo Cim., 42A (1966), 930 | DOI | Zbl

[23] A. A. Logunov, L. D. Soloviev, A. N. Tavkhelidze, Phys. Lett., 24B (1967), 181 ; K. Igi, S. Matsuda, Phys. Rev. Lett., 18 (1967), 625 ; R. Dolen, D. Horn, C. Schmid, Phys. Rev., 166 (1968), 1768 ; M. Jacob, Rapporteur talk at the Lund Conference on Elementary Particle (June 1969) | DOI | DOI | DOI

[24] D. H. Lyth, Nuovo Cim., 53A (1968), 969 | DOI

[25] V. I. Lendel, D. M. Marina, YaF, 8 (1968), 1044

[26] G. R. Bart, R. L. Warnock, Phys. Rev. Lett., 22 (1969), 1081 | DOI

[27] R. L. Warnock, In Lectures in Theoretical High Energy Physics, Ch. 10, ed. H. Aly, Willey-Intersience Publication, New York, 1968

[28] D. V. Shirkov, V. V. Serebryakov, V. A. Mescheryakov, Dispersionnye teorii silnykh vzaimodeistvii pri nizkikh energiyakh, «Nauka», 1967

[29] M. Froissart, Nuovo Cim., 22 (1961), 191 | DOI | MR

[30] M. Bander, P. W. Coulter, G. L. Shaw, Phys. Rev. Lett., 14 (1965), 270 | DOI | MR