Functional integration and Regge-eikonal representation of the scattering amplitude
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 196-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the scalar $g\psi^2\varphi$-model, the functional integration method is used in the straight-line path approximation to obtain a Regge-eikonal representation for the scattering amplitude of highenergyparticles. To this end all possible ladder diagrams with “many-tower” exchange are summed in the framework of the given approximation.
@article{TMF_1972_10_2_a3,
     author = {B. M. Barbashov and V. V. Nesterenko},
     title = {Functional integration and {Regge-eikonal} representation of the scattering amplitude},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {196--203},
     year = {1972},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a3/}
}
TY  - JOUR
AU  - B. M. Barbashov
AU  - V. V. Nesterenko
TI  - Functional integration and Regge-eikonal representation of the scattering amplitude
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 196
EP  - 203
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a3/
LA  - ru
ID  - TMF_1972_10_2_a3
ER  - 
%0 Journal Article
%A B. M. Barbashov
%A V. V. Nesterenko
%T Functional integration and Regge-eikonal representation of the scattering amplitude
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 196-203
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a3/
%G ru
%F TMF_1972_10_2_a3
B. M. Barbashov; V. V. Nesterenko. Functional integration and Regge-eikonal representation of the scattering amplitude. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 2, pp. 196-203. http://geodesic.mathdoc.fr/item/TMF_1972_10_2_a3/

[1] J. D. Jackson, Rev. Mod. Phys., 42 (1970), 12 | DOI | Zbl

[2] H. Abarbanel, C. Itzykson, Phys. Rev. Lett., 23 (1969), 53 ; Б. М. Барбашов, С. П. Кулешов, В. А. Матвеев, А. Н. Сисакян, ТМФ, 3 (1970), 342 | DOI | MR

[3] S. J. Chang, P. M. Fishbane, Phys. Rev., D2 (1970), 1104 | Zbl

[4] S. J. Chang, T. M. Yan, Phys. Rev. Lett., 25 (1970), 1586 | DOI

[5] B. Hasslacher, D. K. Sinclair, G. M. Cicuta, R. L. Sugar, Phys. Rev. Lett., 25 (1970), 1591 | DOI

[6] H. Cheng, T. T. Wu, Phys. Rev. Lett., 24 (1970), 1457

[7] S. J. Chang, S. K. Ma, Phys. Rev., 180 (1969), 1506 | DOI

[8] S. C. Frautschi, C. J. Hamer, F. Ravndal, Phys. Rev., D2 (1970), 2681

[9] B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, V. N. Pervushin, A. N. Sissakian, A. N. Tavkhelidze, Phys. Lett., 33B (1970), 484 | DOI

[10] A. Salam, P. Matthews, Phys. Rev., 90 (1953), 690 | DOI | MR | Zbl

[11] B. M. Barbashov, ZhETF, 48 (1965), 607 | MR | Zbl

[12] I. V. Andreev, I. A. Batalin, Preprint FIAN No 60, 1970

[13] B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, A. N. Sissakian, JINR preprint E2-4692, Dubna, 1969

[14] R. I. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, The Analytic $S$-Matrix, University Press, Cambridge, 1966 | MR | Zbl

[15] A. V. Efremov, Preprint E-2125, OIYaI, 1965 ; О. И. Завьялов, ЖЭТФ, 47 (1964), 1099 | MR

[16] H. Cheng, T. T. Wu, Phys. Lett., 34B (1971), 647 | DOI

[17] T. L. Trueman, T. Yao, Phys. Rev., 132 (1963), 2741 | DOI | MR

[18] I. J. Muzinich, G. Tiktopoulos, S. B. Treiman, Phys. Rev., D3 (1971), 1041

[19] R. C. Arnold, Phys. Rev., 153 (1967), 1523 | DOI

[20] G. M. Cicuta, R. L. Sugar, Phys. Rev., D3 (1971), 970

[21] G. Tiktopoulos, S. B. Treiman, Phys. Rev., D3 (1971), 1037