On the spectrum of random matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 1, pp. 102-112

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the distribution of eigenvalues in a certain ensemble of random particles that contains as a special case the ensemble used by Wigner to give a statistical description of the energy levels of heavy nuclei, it is shown that the distribution function of the elgenvalues divided by the factor $N$ (the order of the matrices) becomes nonrandom In the limit $N\to\infty$ and can be found by solving a definite functional equation.
@article{TMF_1972_10_1_a8,
     author = {L. A. Pastur},
     title = {On the spectrum of random matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--112},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a8/}
}
TY  - JOUR
AU  - L. A. Pastur
TI  - On the spectrum of random matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 102
EP  - 112
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a8/
LA  - ru
ID  - TMF_1972_10_1_a8
ER  - 
%0 Journal Article
%A L. A. Pastur
%T On the spectrum of random matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 102-112
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a8/
%G ru
%F TMF_1972_10_1_a8
L. A. Pastur. On the spectrum of random matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 1, pp. 102-112. http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a8/