Radius of the $\pi$-meson and the proton and analytic properties of the form factor
Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 1, pp. 19-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On the basis of the analytic properties of the electromagnetic form factor, upper and lower limits for the mean square radius of elementary particies are established by different methods. The first method uses only the experimental distribution of the modulus of the form factor in the annihilation channel; the second uses also the experimental value of the form factor at a certain space-like point. Both methods lead to within the limits of the experimental errors to the same value for the $\pi$-meson radius: $r_\pi=0.7\pm0.15\,F$. Lower and upper bounds are also obtained for the proton radius: $0.7\pm0.12\,F\leqslant r_p\le1.05\pm0.06\,F$.
@article{TMF_1972_10_1_a2,
     author = {V. Z. Baluni},
     title = {Radius of the $\pi$-meson and the proton and analytic properties of the form factor},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {19--32},
     year = {1972},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a2/}
}
TY  - JOUR
AU  - V. Z. Baluni
TI  - Radius of the $\pi$-meson and the proton and analytic properties of the form factor
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1972
SP  - 19
EP  - 32
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a2/
LA  - ru
ID  - TMF_1972_10_1_a2
ER  - 
%0 Journal Article
%A V. Z. Baluni
%T Radius of the $\pi$-meson and the proton and analytic properties of the form factor
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1972
%P 19-32
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a2/
%G ru
%F TMF_1972_10_1_a2
V. Z. Baluni. Radius of the $\pi$-meson and the proton and analytic properties of the form factor. Teoretičeskaâ i matematičeskaâ fizika, Tome 10 (1972) no. 1, pp. 19-32. http://geodesic.mathdoc.fr/item/TMF_1972_10_1_a2/

[1] A. Martin, Invited talk at the XV Inter. Conf. on High Energy Physics, Kiev, 1970

[2] Nguen Van Kheu, YaF, 7, 5; (1968), 1111

[3] A. A. Logunov, Nguen Van Kheu, TMF, 1 (1970), 375

[4] V. Z. Baluni, Nguen Van Kheu, V. A. Suleimanov, YaF, 9 (1969), 3

[5] V. Z. Baluni, Preprint ITF-69-15, Kiev, 1969

[6] B. V. Geshkenbein, YaF, 9, 6; (1969), 1232

[7] Dao Vong Dyg, Nguen Van Kheu, TMF, 3, 2 ; (1969), 178

[8] V. Z. Baluni, TMF, 6, 3 ; (1971), 334 ; Доклад на XV Межд. конф. по физике высоких энергий (1970), Киев

[9] Nguen Tkhi Khong, YaF, 13 (1971), 409

[10] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, «Nauka», 1965 | MR

[11] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, 1962

[12] N. M. Meiman, ZhETF, 44 (1963), 1228 | MR | Zbl

[13] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. 2, «Nauka», 1968 | MR | Zbl

[14] Zh. E. Ogustin, Seminar po vektornym mezonam i elektromagnitnym vzaimodeistviyam (Dubna, sentyabr, 1969)

[15] M. Conversi, International School of Subnuclear Physics “Ettore Majorana” (Erice, July, 1970) | Zbl

[16] C. Mistretta et al., Phys. Rev. Lett., 20 (1968), 1523 | DOI

[17] M. Conversi et al., Nuovo Cim., 40A (1965), 490

[18] S. Furuichi et al., Progr. Theor. Phys., 38 (1967), 636 | DOI

[19] B. Dudelzach et al., 1965, 28 (1963), 18

[20] B. G. Barret et al., Phys. Rev., 116 (1968), 1583

[21] D. J. Drickey, L. M. Hand, Phys. Rev. Lett., 9 (1962), 52 | DOI