Magnetic moment of a particle with arbitrary spin
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 388-397 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The intrinsic magnetic moment of a particle with arbitrary spin is calculated. The calculation is based on using of matrix elements for projection spin operators and coefficients of the relativistic wave equations. The obtained value of the magnetic moment confirms the suggested earlier hypothesis by Belinfante.
@article{TMF_1971_9_3_a8,
     author = {V. S. Tumanov},
     title = {Magnetic moment of a~particle with arbitrary spin},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {388--397},
     year = {1971},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a8/}
}
TY  - JOUR
AU  - V. S. Tumanov
TI  - Magnetic moment of a particle with arbitrary spin
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 388
EP  - 397
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a8/
LA  - ru
ID  - TMF_1971_9_3_a8
ER  - 
%0 Journal Article
%A V. S. Tumanov
%T Magnetic moment of a particle with arbitrary spin
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 388-397
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a8/
%G ru
%F TMF_1971_9_3_a8
V. S. Tumanov. Magnetic moment of a particle with arbitrary spin. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 388-397. http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a8/

[1] F. J. Belinfante, Physica, 6 (1939), 870 | DOI | MR | Zbl

[2] F. J. Belinfante, Phys. Rev., 92 (1953), 997 | DOI

[3] C. Fronsdal, Nuovo Cim., Suppl., 9 (1958), 416 | DOI | MR | Zbl

[4] V. S. Tumanov, ZhETF, 46 (1964), 1755 | MR

[5] V. S. Tumanov, Izv. VUZov (fizika), 1966, no. 4, 151

[6] I. M. Gelfand, A. M. Yaglom, ZhETF, 18 (1948), 703 | MR

[7] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958

[8] M. A. Naimark, Lineinye predstavleniya gruppy Lorentsa, Fizmatgiz, 1958 | MR

[9] E. Wild, Proc. Roy. Soc., A191 (1947), 253 | DOI | MR | Zbl

[10] A. Z. Capri, Phys. Rev., 178 (1969), 2427 | DOI

[11] M. Fierz, W. Pauli, Proc. Roy. Soc., A173 (1939), 211 | DOI | MR

[12] Harish-Chandra, Proc. Roy. Soc., A192 (1948), 195 | DOI | MR | Zbl

[13] E. S. Fradkin, ZhETF, 20 (1950), 27 | MR

[14] S. N. Gupta, Phys. Rev., 95 (1954), 1334 | DOI | Zbl

[15] S. J. Chang, Phys. Rev., 161 (1967), 1308 | DOI

[16] Harish-Chandra, Phys. Rev., 71 (1947), 793 | DOI | MR | Zbl

[17] H. J. Bhabha, Phil. Mag., 43 (1952), 33 | DOI | MR | Zbl

[18] I. Ulehla, Chekhosl. fiz. zh., 4 (1954), 267 | MR

[19] R. L. Pease, J. Pease, Phys. Rev., 107 (1957), 1169 | DOI | Zbl

[20] H. Bacry, P. Combe, J. L. Richard, Nuovo Cim., 67A (1970), 267 | DOI | MR | Zbl

[21] H. Bacry, P. Combe, J. L. Richard, Nuovo Cim., 70A (1970), 289 | DOI | MR

[22] Kh. Umedzava, Kvantovaya teoriya polya, IL, 1958