On differential equations for the Feynman integral of a~one-loop diagram
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 380-387

Voir la notice de l'article provenant de la source Math-Net.Ru

The Feynman integral $I(s,t)$ for one-loop diagram with four vertices is considered. With the aid of the Griffiths' method of differentiating rational differential forms with respect to the parameter, it is proved that $I(s,t)$ satisfies the system of two first order differential equations. From this system a hyperbolic partial differential equation for $I(s,t)$ is obtained, the main coefiicient of which vanishes on the Landau's manifold of the Feynman integral.
@article{TMF_1971_9_3_a7,
     author = {V. A. Golubeva},
     title = {On differential equations for the {Feynman} integral of a~one-loop diagram},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--387},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a7/}
}
TY  - JOUR
AU  - V. A. Golubeva
TI  - On differential equations for the Feynman integral of a~one-loop diagram
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 380
EP  - 387
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a7/
LA  - ru
ID  - TMF_1971_9_3_a7
ER  - 
%0 Journal Article
%A V. A. Golubeva
%T On differential equations for the Feynman integral of a~one-loop diagram
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 380-387
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a7/
%G ru
%F TMF_1971_9_3_a7
V. A. Golubeva. On differential equations for the Feynman integral of a~one-loop diagram. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 380-387. http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a7/