On differential equations for the Feynman integral of a~one-loop diagram
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 380-387
Voir la notice de l'article provenant de la source Math-Net.Ru
The Feynman integral $I(s,t)$ for one-loop diagram with four vertices is considered.
With the aid of the Griffiths' method of differentiating rational differential forms with
respect to the parameter, it is proved that $I(s,t)$ satisfies the system of two first order
differential equations. From this system a hyperbolic partial differential equation for
$I(s,t)$ is obtained, the main coefiicient of which vanishes on the Landau's manifold of
the Feynman integral.
@article{TMF_1971_9_3_a7,
author = {V. A. Golubeva},
title = {On differential equations for the {Feynman} integral of a~one-loop diagram},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {380--387},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a7/}
}
V. A. Golubeva. On differential equations for the Feynman integral of a~one-loop diagram. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 380-387. http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a7/