On a~complete set of commuting operators for ladder representations of the Lie algebra of
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 365-379
Voir la notice de l'article provenant de la source Math-Net.Ru
In connection with applications of tlie ladder representations the question about
the completeness of a set of commuting operators with a definite physical interpretation
is investigated. A suitable transformation of these operators is introduced, by means
of which the problem under consideration is reduced to investigation of a system of
functional equations. A number of theorems about this system are proved, from which
the completeness of the mentioned set follows. As a result, we have established that
the ladder representations of the Lie algebra of $U(6,6)$ can be given in terms of a physical
complete set of commuting operators.
@article{TMF_1971_9_3_a6,
author = {A. B. Nikolov},
title = {On a~complete set of commuting operators for ladder representations of the {Lie} algebra of},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {365--379},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a6/}
}
TY - JOUR AU - A. B. Nikolov TI - On a~complete set of commuting operators for ladder representations of the Lie algebra of JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1971 SP - 365 EP - 379 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a6/ LA - ru ID - TMF_1971_9_3_a6 ER -
A. B. Nikolov. On a~complete set of commuting operators for ladder representations of the Lie algebra of. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 365-379. http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a6/