On a~complete set of commuting operators for ladder representations of the Lie algebra of
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 365-379

Voir la notice de l'article provenant de la source Math-Net.Ru

In connection with applications of tlie ladder representations the question about the completeness of a set of commuting operators with a definite physical interpretation is investigated. A suitable transformation of these operators is introduced, by means of which the problem under consideration is reduced to investigation of a system of functional equations. A number of theorems about this system are proved, from which the completeness of the mentioned set follows. As a result, we have established that the ladder representations of the Lie algebra of $U(6,6)$ can be given in terms of a physical complete set of commuting operators.
@article{TMF_1971_9_3_a6,
     author = {A. B. Nikolov},
     title = {On a~complete set of commuting operators for ladder representations of the {Lie} algebra of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {365--379},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a6/}
}
TY  - JOUR
AU  - A. B. Nikolov
TI  - On a~complete set of commuting operators for ladder representations of the Lie algebra of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 365
EP  - 379
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a6/
LA  - ru
ID  - TMF_1971_9_3_a6
ER  - 
%0 Journal Article
%A A. B. Nikolov
%T On a~complete set of commuting operators for ladder representations of the Lie algebra of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 365-379
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a6/
%G ru
%F TMF_1971_9_3_a6
A. B. Nikolov. On a~complete set of commuting operators for ladder representations of the Lie algebra of. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 365-379. http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a6/