Translationally invariant limit of the Lee model. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 305-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the translationally invariant limit ot the boson field in the Lee model exists and is equal to the free field. As a result, the translationally invariant scattering matrix exists also, but it is equal to the identity. The calculation of the same matrix by the standard perturbation theory procedure gives rise to divergent expressions. This means that we have demonstrated in the particular case that the divergencies of the quantum field theory can be caused by using of the perturbation theory.
@article{TMF_1971_9_3_a0,
     author = {L. A. Dadashev},
     title = {Translationally invariant limit of the {Lee} {model.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--317},
     year = {1971},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a0/}
}
TY  - JOUR
AU  - L. A. Dadashev
TI  - Translationally invariant limit of the Lee model. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 305
EP  - 317
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a0/
LA  - ru
ID  - TMF_1971_9_3_a0
ER  - 
%0 Journal Article
%A L. A. Dadashev
%T Translationally invariant limit of the Lee model. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 305-317
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a0/
%G ru
%F TMF_1971_9_3_a0
L. A. Dadashev. Translationally invariant limit of the Lee model. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 3, pp. 305-317. http://geodesic.mathdoc.fr/item/TMF_1971_9_3_a0/

[1] L. A. Dadashev, TMF, 8 (1971), 308 | MR

[2] Nelson, Matematika, 10:1 (1966); M. Guenin, G. Velo, Helv. Phys. Acta, 41 (1968), 362 | MR | Zbl

[3] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, «Nauka», 1966 | MR | Zbl

[4] A. I. Plesner, V. A. Rokhlin, UMN, 1:1 (1946), 71 | MR | Zbl