Spatially inhomogeneous solutions of the averaged chain of the equations of the kinetic theory of gases in the case of systems with a strong statistical coupling
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 291-301 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The chain of equations averaged at time intervals of the order of free run time is deduced from the Bogolubov chain of equations in the first order in the Van der Waals number (a rarefyness parameter). This chain can be used for describing macroscopic processes without any assumptions about the relations between functions of different orders. In the case when the initial values of a finite number $q$ of the lower distribution functions are known, all the distribution functions can be expressed in terms of $q$ new functions, for which the chain takes the form of a closed system of equations. The methods of solution as well as some properties of the solutions are considered for the system obtained. In particular, the un-monotone character of the transition to the equilibrium is established for a considered class of physical systems and the turbulence problem is discussed.
@article{TMF_1971_9_2_a9,
     author = {A. D. Khon'kin},
     title = {Spatially inhomogeneous solutions of the averaged chain of the equations of the kinetic theory of gases in the case of systems with a~strong statistical coupling},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--301},
     year = {1971},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a9/}
}
TY  - JOUR
AU  - A. D. Khon'kin
TI  - Spatially inhomogeneous solutions of the averaged chain of the equations of the kinetic theory of gases in the case of systems with a strong statistical coupling
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 291
EP  - 301
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a9/
LA  - ru
ID  - TMF_1971_9_2_a9
ER  - 
%0 Journal Article
%A A. D. Khon'kin
%T Spatially inhomogeneous solutions of the averaged chain of the equations of the kinetic theory of gases in the case of systems with a strong statistical coupling
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 291-301
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a9/
%G ru
%F TMF_1971_9_2_a9
A. D. Khon'kin. Spatially inhomogeneous solutions of the averaged chain of the equations of the kinetic theory of gases in the case of systems with a strong statistical coupling. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 291-301. http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a9/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[2] V. N. Zhigulev, DAN SSSR, 161 (1961), 1051 | MR

[3] V. N. Zhigulev, Nekotorye problemy neravnovesnoi statisticheskoi mekhaniki i ikh svyaz s voprosami statisticheskoi teorii turbulentnosti, Tr. TsAGI, 1135, 1969

[4] E. G. D. Cohen, T. H. Berlin, Physica, 26 (1960), 717 | DOI | Zbl

[5] J. V. Sengers, E. G. D. Cohen, Physica, 27 (1961), 230 | DOI | MR | Zbl

[6] E. G. D. Cohen, Physica, 27 (1961), 163 | DOI | MR | Zbl

[7] S. Cho, Dzh. Ulenbek, “Kineticheskaya teoriya yavlenii v plotnykh gazakh”, V knige: Dzh. Ulenbek, Dzh. Ford, Lektsii po statisticheskoi mekhanike, «Mir», 1965

[8] R. F. Snider, C. F. Curtiss, Phys. Fluids, 1 (1958), 122 | DOI | MR | Zbl

[9] H. Grad, “Principles of kinetic theory of gases”, Handbuch der Physik, B. XII, ed. S. Flügge, 1958, 205 | DOI | MR

[10] L. Sirovich, Phys. Fluids, 6 (1963), 10 | DOI | MR | Zbl

[11] M. N. Kogan, Dinamika razrezhennogo gaza, «Nauka», 1967

[12] A. D. Khonkin, DAN SSSR, 190 (1970), 565 | MR

[13] A. D. Khonkin, TMF, 4 (1970), 253

[14] L. D. Landau, E. M. Lifshits, Mekhanika sploshnykh sred, GITTL, 1954

[15] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, «Nauka», 1967 | MR | Zbl