Eikonal representation for the amplitudes of scattering of Dirac particles by an arbitrary potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 264-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the functional integration method the deduction of the eikonal representation for scattering amplitude of the Dirac particle on an arbitrary potential is performed. The method generalizing the usual operation of taking the square of the Dirac equation is proposed for the obtaining the functional integral representation of the amplitude.
@article{TMF_1971_9_2_a7,
     author = {V. N. Pervushin},
     title = {Eikonal representation for the amplitudes of scattering of {Dirac} particles by an arbitrary potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--272},
     year = {1971},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a7/}
}
TY  - JOUR
AU  - V. N. Pervushin
TI  - Eikonal representation for the amplitudes of scattering of Dirac particles by an arbitrary potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 264
EP  - 272
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a7/
LA  - ru
ID  - TMF_1971_9_2_a7
ER  - 
%0 Journal Article
%A V. N. Pervushin
%T Eikonal representation for the amplitudes of scattering of Dirac particles by an arbitrary potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 264-272
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a7/
%G ru
%F TMF_1971_9_2_a7
V. N. Pervushin. Eikonal representation for the amplitudes of scattering of Dirac particles by an arbitrary potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 264-272. http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a7/

[1] G. Moliere, Z. Naturforsch., 2A (1947), 133 ; R. I. Glauber, Lectures in Theoretical physics, vol. I, N. Y., 1959 | Zbl

[2] B. J. Malenka, Phys. Rev., 95 (1954), 522 | DOI | Zbl

[3] V. R. Garsevanishvili, Y. A. Matveev, L. A. Slepchenko, A. N. Tavkhelidze, Phys. Lett., 29B (1969), 191 | DOI

[4] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 ; В. Г. Кадышевский, А. Н. Тавхелидзе, Проблемы теоретической физики, «Наука», 1969 | DOI | MR

[5] B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, A. A. Sisakyan, TMF, 3 (1970), 342

[6] V. N. Pervushin, TMF, 4 (1970), 22

[7] B. M. Barbashov, S. P. Kuleshov, V. A. Matveev, V. N. Pervushin, A. N. Sissakian, A. N. Tavkhelidze, JINR Communication E2-5217, Dubna, 1970

[8] L. I. Schiff, Phys. Rev., 103 (1956), 443 ; A. Baker, Phys. Rev., 134 (1964), 240 | DOI | MR | Zbl | DOI | MR

[9] S. P. Kuleshov, V. A. Matveev, A. A. Sisakyan, TMF, 2 (1970), 73

[10] B. M. Barbashov, ZhETF, 48 (1965), 607 | MR | Zbl

[11] S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, 1963

[12] R. Feynman, Phys. Rev., 84 (1951), 108 | DOI | MR | Zbl

[13] O. A. Khrustalev, V. I. Savrin, N. Ye. Tyurin, Preprint E2-4479, JINR, 1969