On the perturbation of the quasilevels of a Schrödinger operator with complex potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 252-263
Cet article a éte moissonné depuis la source Math-Net.Ru
The concepts of energy levels and quasi-levels are defined in a unique way for three-dimensional Schrödinger operator with complex finite potential. The behaviour of quasi-levels in the case of analytical perturbation of potential is studied. For the first correction of the perturbation theory the analogue of the secular equation is obtained.
@article{TMF_1971_9_2_a6,
author = {T. M. Gataullin and M. V. Karasev},
title = {On the perturbation of the quasilevels of {a~Schr\"odinger} operator with complex potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {252--263},
year = {1971},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a6/}
}
TY - JOUR AU - T. M. Gataullin AU - M. V. Karasev TI - On the perturbation of the quasilevels of a Schrödinger operator with complex potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1971 SP - 252 EP - 263 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a6/ LA - ru ID - TMF_1971_9_2_a6 ER -
T. M. Gataullin; M. V. Karasev. On the perturbation of the quasilevels of a Schrödinger operator with complex potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 252-263. http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a6/
[1] O. A. Ladyzhenskaya, UMN, XII (1957), 161 | Zbl
[2] C. L. Dolph, J. B. McLeod, D. Thoe, J. Math. Anal. Appl., 16 (1966), 311 | DOI | MR | Zbl
[3] B. R. Vainberg, Matematicheskii sbornik, 77 (1968), 259 | MR | Zbl
[4] Ya. B. Zeldovich, ZhETF, 39 (1960), 776
[5] R. T. Seeley, Indagation Math., A65 (1962), 434 | DOI | MR
[6] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, 1962 | MR
[7] L. A. Vainshtein, Otkrytye rezonatory i otkrytye volnovody, «Sov. Radio», 1966
[8] T. Ikebe, Arch. Rational Mech. Anal., 5 (1960), 1 | DOI | MR | Zbl
[9] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, «Nauka», 1965 | MR