On the perturbation of the quasilevels of a Schrödinger operator with complex potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 252-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concepts of energy levels and quasi-levels are defined in a unique way for three-dimensional Schrödinger operator with complex finite potential. The behaviour of quasi-levels in the case of analytical perturbation of potential is studied. For the first correction of the perturbation theory the analogue of the secular equation is obtained.
@article{TMF_1971_9_2_a6,
     author = {T. M. Gataullin and M. V. Karasev},
     title = {On the perturbation of the quasilevels of {a~Schr\"odinger} operator with complex potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {252--263},
     year = {1971},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a6/}
}
TY  - JOUR
AU  - T. M. Gataullin
AU  - M. V. Karasev
TI  - On the perturbation of the quasilevels of a Schrödinger operator with complex potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 252
EP  - 263
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a6/
LA  - ru
ID  - TMF_1971_9_2_a6
ER  - 
%0 Journal Article
%A T. M. Gataullin
%A M. V. Karasev
%T On the perturbation of the quasilevels of a Schrödinger operator with complex potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 252-263
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a6/
%G ru
%F TMF_1971_9_2_a6
T. M. Gataullin; M. V. Karasev. On the perturbation of the quasilevels of a Schrödinger operator with complex potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 252-263. http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a6/

[1] O. A. Ladyzhenskaya, UMN, XII (1957), 161 | Zbl

[2] C. L. Dolph, J. B. McLeod, D. Thoe, J. Math. Anal. Appl., 16 (1966), 311 | DOI | MR | Zbl

[3] B. R. Vainberg, Matematicheskii sbornik, 77 (1968), 259 | MR | Zbl

[4] Ya. B. Zeldovich, ZhETF, 39 (1960), 776

[5] R. T. Seeley, Indagation Math., A65 (1962), 434 | DOI | MR

[6] N. Danford, Dzh. Shvarts, Lineinye operatory. Obschaya teoriya, IL, 1962 | MR

[7] L. A. Vainshtein, Otkrytye rezonatory i otkrytye volnovody, «Sov. Radio», 1966

[8] T. Ikebe, Arch. Rational Mech. Anal., 5 (1960), 1 | DOI | MR | Zbl

[9] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, «Nauka», 1965 | MR