Integral representation of Wightman functions in two-dimensional space-time
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 232-239
Cet article a éte moissonné depuis la source Math-Net.Ru
The description of the extended tube is given and the integral representation for the Wightman functions of arbitrary order in two-dimensional space-time is constructed, which takes into account in an explicit form the Lorentz covariance and the spectrum condition.
@article{TMF_1971_9_2_a4,
author = {V. V. Zharinov},
title = {Integral representation of {Wightman} functions in two-dimensional space-time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {232--239},
year = {1971},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a4/}
}
V. V. Zharinov. Integral representation of Wightman functions in two-dimensional space-time. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 2, pp. 232-239. http://geodesic.mathdoc.fr/item/TMF_1971_9_2_a4/
[1] G. Källén, A. S. Wightman, Mat. Fys. Skr. Dan. Vid. Selsk., 1:6 (1958) | MR | Zbl
[2] G. Källén, H. Wilhelmsson, Mat. Fys. Skr. Dan. Vid. Selsk., 1:9 (1959) | MR | Zbl
[3] G. Källén, J. C. Toll, Helv. Phys. Acta, 33 (1960), 753 | MR
[4] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, «Nauka», 1964 | MR
[5] V. S. Vladimirov, Izv. AN SSSR, ser. mat., 29:4 (1965), 807–834 | MR | Zbl
[6] V. S. Vladimirov, Sib. mat. zhurnal, IX (1968), 1238 | MR | Zbl
[7] J. Bros, H. Epstein, V. Glaser, Commun. Math. Phys., 6 (1967), 77 | DOI | MR | Zbl
[8] R. Iost, Obschaya teoriya kvantovannykh polei, «Mir», 1967 | MR