On the reduction $U_n\supset O_n$
Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 1, pp. 86-90
The reduction $U_n$ $(n>3)$ is performed for the two-line representations of the group $U_n\supset O_n$. The algorithm of constructing the polinomials with highest weight with the respect to $O_n$ is given.
@article{TMF_1971_9_1_a5,
author = {M. S. Kil'dyushov},
title = {On the reduction $U_n\supset O_n$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {86--90},
year = {1971},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_9_1_a5/}
}
M. S. Kil'dyushov. On the reduction $U_n\supset O_n$. Teoretičeskaâ i matematičeskaâ fizika, Tome 9 (1971) no. 1, pp. 86-90. http://geodesic.mathdoc.fr/item/TMF_1971_9_1_a5/
[1] P. Kramer, M. Moshinsky, Nucl. Phys., 82 (1966), 241 | DOI | MR | Zbl
[2] P. Kramer, M. Moshinsky, Nucl. Phys., A107 (1968), 481 | DOI
[3] M. Brunet, M. Resnikoff, J. Math. Phys., 11 (1970), 1471 | DOI | MR
[4] R. T. Sharp, H. C. von Baeyer, S. C. Pieper, Nucl. Phys., A127 (1969), 513 | DOI
[5] H. C. von Baeyer, R. T. Sharp, Nucl. Phys., A140 (1970), 118
[6] M. Moshinsky, J. Math. Phys., 4 (1963), 1128 | DOI | MR | Zbl
[7] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, 1947