Projection operators for simple lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 255-271
Voir la notice de l'article provenant de la source Math-Net.Ru
The solution of many problems in nuclear theory and elementary particle physics
amounts to decomposing the reducible representations of the symmetry groups of
quantum mechanical systems into irreducible components. To carry out this decomposition,
projection operators are needed. In the present paper we have constructed, for
all simple compact Lie groups $G(l)$ of the rank $l$ (both classical and exceptional), operators
which project the arbitrary vector with the weight $f=(f_1,f_2,\dots,f_l)$ onto the
highest weight vector of the irreducible representation $D^{[f]}$ of the group $G(l)$. The projection operators are represented in the form of series composed of powers of the
infinitesimal operators, which makes them convenient for the solution of particular
problems concerning the decomposition of reducible representations into irreducible
components. The structure of the projection operators is given for all simple compact
Lie groups by similar formulas.
@article{TMF_1971_8_2_a9,
author = {R. M. Asherova and Yu. F. Smirnov and V. N. Tolstoy},
title = {Projection operators for simple lie groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {255--271},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a9/}
}
TY - JOUR AU - R. M. Asherova AU - Yu. F. Smirnov AU - V. N. Tolstoy TI - Projection operators for simple lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1971 SP - 255 EP - 271 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a9/ LA - ru ID - TMF_1971_8_2_a9 ER -
R. M. Asherova; Yu. F. Smirnov; V. N. Tolstoy. Projection operators for simple lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 255-271. http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a9/