Coordinate asymptotic behavior of three-particle wave functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 235-250
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the coordfinate asymptotic behavior of the wave function for a system of three nonrelativistic partieles, allowance being made for $(3\to 3)$ processes. Attention is devoted primarily to twofold seattering effects, it is shown that in the parts of the configuration space where the formally constructed scattering amplitude becomes infinite the asymptotic behavior of the $(3\to 3)$ wave function can be described by means of a Fresnel ntegral.
@article{TMF_1971_8_2_a7,
author = {S. P. Merkur'ev},
title = {Coordinate asymptotic behavior of three-particle wave functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {235--250},
year = {1971},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a7/}
}
S. P. Merkur'ev. Coordinate asymptotic behavior of three-particle wave functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 235-250. http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a7/
[1] M. Goldberger, K. Vatson, Teoriya stolknovenii, », 1967
[2] J. Nuttall, Phys. Rev. Letters, 19 (1967), 473 | DOI
[3] J. Nuttall, J. G. Webb, Phys. Rev., 178 (1969), 2226 | DOI
[4] E. Gerjuoy, Configuration space three body scattering theory, Preprint, USA, University of Pittsburgh, 1970
[5] J. B. Mcguire, J. Math. Phys., 5 (1964), 622 | DOI | MR | Zbl
[6] L. D. Faddeev, Trudy matem. in-ta AN SSSR, 69, 1963 | MR | Zbl
[7] V. S. Buslaev, S. P. Merkurev, TMF, 5 (1970), 372
[8] V. S. Buslaev, Problemy matem. fiziki LGU, Sb., 1, 1966 | Zbl
[9] V. A. Borovikov, Difraktsiya na mnogougolnikakh i mnogogrannikakh, «Nauka», 1966 | MR