Quantized scalar field in Friedmann–Lobachevskii space
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 226-234
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quantized scalar field is considered in an open Friedmann universe wich a Lorentz invariant spatial part. Since the Friedmann universe is nomstationary, the energy of a free field is a not conserved and the Hamiltonian is not diagonal in the creation and annihilation operators. The Hamiltonian is diagonaliized by means of a set of $\eta$-dependent representations ($\eta$ is the time) of the commutation relations with Lorentz invariant vacuum states. The $\eta$-wacuum mean value of the operator of the number density of particles corresponding to the $\eta_0$ representation ($\eta>\eta_0$) is caleulated. The question of $\eta$ a quasielassieal limit is discussed and a transition is made to flat space-time.
@article{TMF_1971_8_2_a6,
     author = {B. A. Levitskii},
     title = {Quantized scalar field in {Friedmann{\textendash}Lobachevskii} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--234},
     year = {1971},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a6/}
}
TY  - JOUR
AU  - B. A. Levitskii
TI  - Quantized scalar field in Friedmann–Lobachevskii space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 226
EP  - 234
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a6/
LA  - ru
ID  - TMF_1971_8_2_a6
ER  - 
%0 Journal Article
%A B. A. Levitskii
%T Quantized scalar field in Friedmann–Lobachevskii space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 226-234
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a6/
%G ru
%F TMF_1971_8_2_a6
B. A. Levitskii. Quantized scalar field in Friedmann–Lobachevskii space. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 226-234. http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a6/

[1] N. A. Chernikov, E. A. Tagirov, Ann. Inst. Henri Poincare, 9 (1968), 109 | MR | Zbl

[2] K. A. Bronnikov, E. A. Tagirov, Preprint R2-4151, OIYaI, 1968

[3] L. Parker, Phys. Rev., 183 (1969), 1057 | DOI | Zbl

[4] O. Nachtmann, Commun. Math. Phys., 6 (1967), 1 | DOI | MR | Zbl

[5] A. A. Grib, S. G. Mamaev, YaF, 10 (1969), 1276 | MR

[6] L. D. Landau, E. M. Lifshits, Teoriya polya, «Nauka», 1967, str. 440 | MR | Zbl

[7] N. Ya. Vilenkin, Ya. A. Smorodinskii, ZhETF, 46 (1964), 1793 | MR

[8] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 2, «Nauka», 1966, str. 235 | MR

[9] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965, str. 524 | MR

[10] N. A. Chernikov, Trudy mezhdunarodnogo soveschaniya po nelokalnoi kvantovoi teorii polya, Dubna, 1967, 183

[11] F. A. Berezin, Metod vtorichnogo kvantovaniya, «Nauka», 1965, str. 98, 102 | MR

[12] K. Friedrichs, Mathematical aspects of quantum theory of fields, Interscience, New York, 1953 | MR | Zbl