Quantized scalar field in Friedmann--Lobachevskii space
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 226-234
Voir la notice de l'article provenant de la source Math-Net.Ru
A quantized scalar field is considered in an open Friedmann universe wich a Lorentz invariant
spatial part. Since the Friedmann universe is nomstationary, the energy of a free field is a not
conserved and the Hamiltonian is not diagonal in the creation and annihilation operators. The
Hamiltonian is diagonaliized by means of a set of $\eta$-dependent representations ($\eta$ is the time) of the commutation relations with Lorentz invariant vacuum states. The $\eta$-wacuum mean value of the operator of the number density of particles corresponding to the $\eta_0$ representation ($\eta>\eta_0$) is caleulated. The question of $\eta$ a quasielassieal limit is discussed and a transition is made to flat space-time.
@article{TMF_1971_8_2_a6,
author = {B. A. Levitskii},
title = {Quantized scalar field in {Friedmann--Lobachevskii} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {226--234},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a6/}
}
B. A. Levitskii. Quantized scalar field in Friedmann--Lobachevskii space. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 226-234. http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a6/