On relativistic equations of motion without ``redundant'' components
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 192-205

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of a definite representation (2.1) for the generators of the proper Poincard group all (to within unitary equivalence) operator functions $H$ for which Eq. (1.1) is invariant under the complete Poincaré group (including space-time reflections) are described. For arbitrary spin a unitary operator is found that relates the representation (2.1) to the Foldy–Shirokov canonical representation. Explicit expressions are obtained for the operators of the coordinate, velocity, and spin in the representation (2.1) for an arbitrary spin $s$.
@article{TMF_1971_8_2_a3,
     author = {W. I. Fushchych and A. L. Grishchenko and A. G. Nikitin},
     title = {On relativistic equations of motion without ``redundant'' components},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--205},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a3/}
}
TY  - JOUR
AU  - W. I. Fushchych
AU  - A. L. Grishchenko
AU  - A. G. Nikitin
TI  - On relativistic equations of motion without ``redundant'' components
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 192
EP  - 205
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a3/
LA  - ru
ID  - TMF_1971_8_2_a3
ER  - 
%0 Journal Article
%A W. I. Fushchych
%A A. L. Grishchenko
%A A. G. Nikitin
%T On relativistic equations of motion without ``redundant'' components
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 192-205
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a3/
%G ru
%F TMF_1971_8_2_a3
W. I. Fushchych; A. L. Grishchenko; A. G. Nikitin. On relativistic equations of motion without ``redundant'' components. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 2, pp. 192-205. http://geodesic.mathdoc.fr/item/TMF_1971_8_2_a3/