Quasipotential equation for a relativistic harmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 1, pp. 61-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the quasipotential approach, a study is made of a relativistic generalization of the exactly solvable problem of an harmonic oscillator. Quasipotential wave equations are constructed in the form of expansions with respect to the wave functions of the corresponding nonrelativistic problem. Relativistic corrections to the energy levels are obtained.
@article{TMF_1971_8_1_a6,
     author = {A. D. Donkov and V. G. Kadyshevskii and M. D. Matveev and R. M. Mir-Kassimov},
     title = {Quasipotential equation for a~relativistic harmonic oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {61--72},
     year = {1971},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a6/}
}
TY  - JOUR
AU  - A. D. Donkov
AU  - V. G. Kadyshevskii
AU  - M. D. Matveev
AU  - R. M. Mir-Kassimov
TI  - Quasipotential equation for a relativistic harmonic oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 61
EP  - 72
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a6/
LA  - ru
ID  - TMF_1971_8_1_a6
ER  - 
%0 Journal Article
%A A. D. Donkov
%A V. G. Kadyshevskii
%A M. D. Matveev
%A R. M. Mir-Kassimov
%T Quasipotential equation for a relativistic harmonic oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 61-72
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a6/
%G ru
%F TMF_1971_8_1_a6
A. D. Donkov; V. G. Kadyshevskii; M. D. Matveev; R. M. Mir-Kassimov. Quasipotential equation for a relativistic harmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 8 (1971) no. 1, pp. 61-72. http://geodesic.mathdoc.fr/item/TMF_1971_8_1_a6/

[1] A. A. Logunov, A. N. Tavkhelidze, Nuovo Cim., 29 (1963), 380 ; A. N. Tavkhelidze, Lectures on Quasipotential Method in Field Theory, Tata Institute of Fundamental Research, Bombay, 1964 | DOI | MR

[2] V. G. Kadyshevsky, Nucl. Phys., B6 (1968), 125 | DOI

[3] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, Nuovo Cim., 55A (1968), 233 ; В. Г. Кадышевский, Р. М. Мир-Касимов, Н. Б. Скачков, ЯФ, 9 (1969), 212 | DOI | MR

[4] V. G. Kadyshevskii, R. M. Mir-Kasimov, M. Friman, YaF, 9 (1969), 646 | MR

[5] M. Freeman, M. D. Mateev, R. M. Mir-Kasimov, Nucl. Phys., B12 (1969), 197 | DOI

[6] C. Itzykson, V. G. Kadyshevsky, I. T. Todorov, Phys. Rev., D1 (1970), 2823

[7] V. G. Kadyshevskii, R. M. Mir-Kasimov, N. B. Skachkov, YaF, 9 (1969), 462 | MR

[8] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Fizmatgiz, 1963

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, t. 13, «Nauka», 1965–1967 | MR

[10] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, 1963

[11] F. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, t. 1, IL, 1968

[12] N. V. Mak-Lakhlan, Teoriya i prilozheniya funktsii Mate, IL, 1953

[13] J. Meixner, F. M. Schafke, Mathieusche Funktionen und Spharoidfunktionen, Springer-Verlag, Berlin, 1914; C. Flammer, Spheroidal Wave Functions, Stanford, 1957 ; J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, F. J. Corbeto, Spheroidal Wave Functions, Chapman and Hall, London, 1956 | MR | Zbl | MR | Zbl

[14] R. Sips, Trans. Amer. Math. Soc., 66 (1949), 93 | DOI | MR | Zbl