Group theory methods in photon statistics
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 348-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the problem of the change of photon statistics resulting from the redistribution of energy between two independent beams can be reduced to the determination of representations of the group $SU(2)$ and can be treated in the formalism of spinor algebra. Classes of field states are found that are stable against transformations of this kind; the simplest of these states are found to be coherent packets.
@article{TMF_1971_7_3_a6,
     author = {E. G. Bashkanskii and V. V. Mityugov},
     title = {Group theory methods in photon statistics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {348--357},
     year = {1971},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a6/}
}
TY  - JOUR
AU  - E. G. Bashkanskii
AU  - V. V. Mityugov
TI  - Group theory methods in photon statistics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 348
EP  - 357
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a6/
LA  - ru
ID  - TMF_1971_7_3_a6
ER  - 
%0 Journal Article
%A E. G. Bashkanskii
%A V. V. Mityugov
%T Group theory methods in photon statistics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 348-357
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a6/
%G ru
%F TMF_1971_7_3_a6
E. G. Bashkanskii; V. V. Mityugov. Group theory methods in photon statistics. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 348-357. http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a6/

[1] R. Glauber, Kvantovaya optika i kvantovaya radiofizika, Sb., «Mir», 1966

[2] L. Volf, E. Mandel, UFN, 87:3 (1965); УФН, 88:2 (1966); УФН, 88:4 (1966)

[3] E. Sudarshan, Phys. Rev. Lett., 10 (1963), 277 | DOI | MR | Zbl

[4] Kh. Takakhasi, Statisticheskaya teoriya svyazi i ee prilozheniya, Sb., «Mir», 1967 | MR

[5] R. H. Brown, R. Q. Twiss, Nature, 178 (1966), 1046 | DOI

[6] J. A. Armstrong, A. W. Smith, Progress in Optics, 6 (1967), 211 | DOI | MR

[7] R. J. Pfleegor, L. Mandel, J. Phys. Res., 159 (1967), 1084 | DOI

[8] R. S. Ingarden, Ann. Inst. Henri Poincarè, VIII (1968), 1

[9] R. L. Stratonovich, Izv. VUZov «Radiofizika», VIII:1 (1965), 1 | MR

[10] V. V. Mityugov, V. P. Morozov, Izv. VUZov «Radiofizika», IX:2 (1968), 260

[11] S. G. Alliluev, ZhETF, 33 (1957), 200 | Zbl

[12] Yu. N. Demkov, ZhETF, 36 (1959), 88 | MR | Zbl

[13] Yu. N. Demkov, ZhETF, 44 (1963), 2007 | MR | Zbl

[14] J. S. Lomont, Applications of finite groups, New York, 1959, p. 150 | MR

[15] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, 1962, str. 1050 | MR

[16] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Fizmatgiz, 1963

[17] Louis de Broglie, J. Andrade e Silva, Phys. Rev., 172 (1969), 1284

[18] V. V. Mityugov, V. P. Morozov, Izv. VUZov «Radiofizika» (to appear)

[19] Dzh. Makki, “Predstavleniya grupp v gilbertovom prostranstve”, v kn.: I. Sigal, Matematicheskie problemy relyativistskoi fiziki, «Mir», 1968 | MR