On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 332-341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H$ be the energy operator of an atom with $n$ electrons in which allowance is made for the motion of the nucleus or the energy operator of $n$ electrons in the field of $n_0$ fixed nuclei. It is shown that in the space of functions defined by an arbitrary irreducible representation of the symmetry group of $H$ the number of discrete eigenvalues of $H$ cannot be infinite if the total charge of the system is less than –1 (in atomic units). Previously, a similar result was known only for $n=2$.
@article{TMF_1971_7_3_a4,
     author = {G. M. Zhislin},
     title = {On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {332--341},
     year = {1971},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a4/}
}
TY  - JOUR
AU  - G. M. Zhislin
TI  - On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 332
EP  - 341
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a4/
LA  - ru
ID  - TMF_1971_7_3_a4
ER  - 
%0 Journal Article
%A G. M. Zhislin
%T On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 332-341
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a4/
%G ru
%F TMF_1971_7_3_a4
G. M. Zhislin. On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 332-341. http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a4/

[1] G. M. Zhislin, Izv. AN SSSR, ser. matem., 33 (1969), 590 | Zbl

[2] G. M. Zhislin, E. L. Mandel, TMF, 1 (1969), 295 | MR

[3] I. Uchiyama, Publ. of the Research Inst. for Math. Sciences Kyoto Univ., Ser. A, 5 (1969), 51 | DOI | MR | Zbl

[4] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza differentsialnykh operatorov, Fizmatgiz, 1963 | MR