On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 332-341
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $H$ be the energy operator of an atom with $n$ electrons in which allowance is made for the motion of the nucleus or the energy operator of $n$ electrons in the field of $n_0$ fixed nuclei. It is shown that in the space of functions defined by an arbitrary irreducible representation of the symmetry group of $H$ the number of discrete eigenvalues of $H$ cannot be infinite if the total charge of the system is less than –1 (in atomic units). Previously, a similar result was known only for $n=2$.
@article{TMF_1971_7_3_a4,
author = {G. M. Zhislin},
title = {On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {332--341},
year = {1971},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a4/}
}
TY - JOUR AU - G. M. Zhislin TI - On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1971 SP - 332 EP - 341 VL - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a4/ LA - ru ID - TMF_1971_7_3_a4 ER -
G. M. Zhislin. On the finiteness of the discrete spectrum of the energy operator of negative atomic and molecular ions. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 332-341. http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a4/
[1] G. M. Zhislin, Izv. AN SSSR, ser. matem., 33 (1969), 590 | Zbl
[2] G. M. Zhislin, E. L. Mandel, TMF, 1 (1969), 295 | MR
[3] I. Uchiyama, Publ. of the Research Inst. for Math. Sciences Kyoto Univ., Ser. A, 5 (1969), 51 | DOI | MR | Zbl
[4] I. M. Glazman, Pryamye metody kachestvennogo spektralnogo analiza differentsialnykh operatorov, Fizmatgiz, 1963 | MR