Partial wave analysis based on a complex vector parametrization
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 322-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A partial analysis of one- and two-particle states is made on the basis of a complex vector parametrization of the Larentz group. In the given approach the transformations of the littte group are interpreted as rotations in a corresponding complex three-dimensional space of parameters of this group; this interpretation makes it possible to construct conveniently the states of a two-particle system with a definite value of the total angular momentum and its projection. This construction is used to decompose the $S$ matrix with respect to partial waves.
@article{TMF_1971_7_3_a3,
     author = {E. E. Tkharev and F. I. Fedorov},
     title = {Partial wave analysis based on a~complex vector parametrization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {322--331},
     year = {1971},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a3/}
}
TY  - JOUR
AU  - E. E. Tkharev
AU  - F. I. Fedorov
TI  - Partial wave analysis based on a complex vector parametrization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 322
EP  - 331
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a3/
LA  - ru
ID  - TMF_1971_7_3_a3
ER  - 
%0 Journal Article
%A E. E. Tkharev
%A F. I. Fedorov
%T Partial wave analysis based on a complex vector parametrization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 322-331
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a3/
%G ru
%F TMF_1971_7_3_a3
E. E. Tkharev; F. I. Fedorov. Partial wave analysis based on a complex vector parametrization. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 3, pp. 322-331. http://geodesic.mathdoc.fr/item/TMF_1971_7_3_a3/

[1] F. I. Fedorov, TMF, 2 (1970), 343

[2] E. E. Tkharev, F. I. Fedorov, YaF, 5 (1967), 1112

[3] E. E. Tkharev, F. I. Fedorov, DAN BSSR, 3 (1970), 212

[4] E. P. Wigner, Ann. of Math., 40 (1939), 149 | DOI | MR | Zbl

[5] E. E. Tkharev, Izv. AN BSSR, ser. fiz. mat., 3 (1970), 93

[6] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, 1958

[7] F. I. Fedorov, A. A. Bogush, DAN BSSR, 6 (1962), 690 | Zbl

[8] Yu. M. Shirokov, ZhETF, 35 (1958), 1005

[9] J. S. Lomont, J. Math. Phys., 1 (1960), 237 | DOI | MR | Zbl

[10] J. F. Boyce, R. Delbourgo, A. Salam, J. Strathdee, Preprint Ic/67/9, Trieste, 1967

[11] P. Moussa, R. Stora, Lect. at Herzeg Novi, Intern. Sch., 1966

[12] M. Jacob, G. C. Wick, Ann. of Phys., 7 (1959), 404 | DOI | MR | Zbl