On phase instability in the case of scattering by a random potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 219-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of a nonrelativistic model problem of the stability of phase functions in the case of scattering of a particle by a random time-independent potential. It is shown that the phase functions may be either stable or unstable depending on the parameters of the problem; a criterion is given for the changeover from stable to unstable conditions. In the latter case, the Usual quantum-mechanical treatment is incorrect and one must introduce an additional averaging procedure. This is a necessary sign of the statistical nature of the system. The instability criterion obtained is used in a discussion of the properties of intermediate compound systems that arise in the interaction of hadrons with nuclei and with one another.
@article{TMF_1971_7_2_a6,
     author = {N. M. Pukhov and D. S. Chernavskii},
     title = {On phase instability in the case of scattering by a~random potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {219--229},
     year = {1971},
     volume = {7},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a6/}
}
TY  - JOUR
AU  - N. M. Pukhov
AU  - D. S. Chernavskii
TI  - On phase instability in the case of scattering by a random potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 219
EP  - 229
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a6/
LA  - ru
ID  - TMF_1971_7_2_a6
ER  - 
%0 Journal Article
%A N. M. Pukhov
%A D. S. Chernavskii
%T On phase instability in the case of scattering by a random potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 219-229
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a6/
%G ru
%F TMF_1971_7_2_a6
N. M. Pukhov; D. S. Chernavskii. On phase instability in the case of scattering by a random potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 219-229. http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a6/

[1] I. N. Sisakyan, E. L. Feinberg, D. S. Chernavskii, ZhETF, 52 (1967), 545

[2] G. Fast, R. Hagedorn, E. M. Jones, Nuovo. Cim., 27, 207; (1963), 856 ; A. Bialas, V. F. Weiskopf, Nuovo. Cim., 33 (1965), 1211 | DOI | DOI

[3] I. V. Allaby, G. Cocconi, A. N. Diddens et al., Proceedings of the Int. Confer. CERN, 1968; Nuovo. Cim., 23 (1969), 369

[4] T. Erikson, T. Maier-Kukuk, UFN, 92 (1967), 271

[5] E. Fermi, Progr. Theor. Phys., 5 (1950), 570 ; 6 (1951), 71 | DOI | MR

[6] L. D. Landau, Izv. AN SSSR, ser. fiz., 17 (1953) ; С. З. Беленький, Л. Д. Ландау, УФН, 56 (1955), 309 ; Г. А. Милехин, Диссертация, Труды ФИАН, 16 (1961), 50 | Zbl | DOI | Zbl

[7] H. Poinkare, J. de Phys., 4 (1906), 369

[8] E. Borel, Mecanique statistique classique, 1925; M. Born, Phys. Blätter, 11 (1955), 49 ; Z. Phys., 153 (1958), 372 | DOI | DOI | MR | Zbl

[9] N. S. Krylov, Raboty po obosnovaniyu statisticheskoi fiziki, Izd-vo AN SSSR, 1960

[10] N. M. Pukhov, D. S. Chernavskii, Uch. zap. Kalininskogo gos. ped. in-ta, 60 (1968), 2

[11] A. N. Kolmogorov, DAN SSSR, 119 (1958), 861 | MR | Zbl

[12] Ya. G. Sinai, DAN SSSR, 158 (1963), 1261 ; Д. В. Аносов, Я. Г. Синай, УМН, 22:5 (1967) | MR | MR | Zbl

[13] L. Van Khov, Kvantovaya teoriya neobratimykh protsessov, Sb., IL, 1961 ; В. М. Файн, УФН, 79 (1963), 641 | MR | DOI | MR | Zbl

[14] D. S. Chernavskii, ZhETF, Pisma, 2 (1965), 23

[15] Ch. Zemach, Nuovo. Cim., 33 (1964), 939 | DOI | MR

[16] A. Degasperis, Nuovo. Cim., 34 (1964), 1667 | DOI | MR | Zbl

[17] V. V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, «Nauka», 1968 | MR

[18] Dzh. Blatt, V. Vaiskopf, Teoreticheskaya yadernaya fizika, IL, 1954