On the class of distributions compatible with locality
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 183-191
Voir la notice de l'article provenant de la source Math-Net.Ru
An investigation is made of the question of the largest class of distributions that admits a formulation of microcausality. To this end a study is made of the local properties of
functionals over quasianalytic classes. Such functionals are shown to allow a natural generalization of the notion of concentration on a fixed set. It is shown that, in contrast to the
usual case of test-function spaces of ftmctions with compact support, the limit of a sequence
of functionals that are concentrated on a fixed set need not be concentrated on this set.
@article{TMF_1971_7_2_a1,
author = {M. A. Soloviev},
title = {On the class of distributions compatible with locality},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {183--191},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a1/}
}
M. A. Soloviev. On the class of distributions compatible with locality. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 183-191. http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a1/