Two-point functions of local infinite-component fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 153-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicitly covariant technique is used to derive a representation for the two-point function $F_{\varphi\psi}(x-y)=\langle0|\varphi(x)\psi(y)|0\rangle$ which takes into account Lorentz covariance, the spectralcondition, and locality; the fields $\varphi$ and $\psi$ may transform in accordance with arbitrary irreducible representations of the proper Lorentz group. The method can also be applied to local nonrenormalizable theories (in which the two-point functions in momentum space may have a growth faster than polynomial). As a corollary it is proved (without any “technical assumptions”) that the mass spectrum in a theory of local infinite-component fields is infinitely degenerate with respect to the spin. By the same token, the well-known Grodsky–Streater “no-go” theorem is extended to nonrenormalizable theories.
@article{TMF_1971_7_2_a0,
     author = {A. I. Oksak and I. T. Todorov},
     title = {Two-point functions of local infinite-component fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--182},
     year = {1971},
     volume = {7},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/}
}
TY  - JOUR
AU  - A. I. Oksak
AU  - I. T. Todorov
TI  - Two-point functions of local infinite-component fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 153
EP  - 182
VL  - 7
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/
LA  - ru
ID  - TMF_1971_7_2_a0
ER  - 
%0 Journal Article
%A A. I. Oksak
%A I. T. Todorov
%T Two-point functions of local infinite-component fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 153-182
%V 7
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/
%G ru
%F TMF_1971_7_2_a0
A. I. Oksak; I. T. Todorov. Two-point functions of local infinite-component fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 153-182. http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/

[1] R. Striter, A. Vaitman, RST, spin i statistika i vse takoe, «Nauka», 1966; Р. Йост, Общая теория квантованных полей, «Мир», 1967 ; Н. Н. Боголюбов, А. А. Логунов, И. Т. Тодоров, Основы аксиоматического подхода в квантовой теории поля, «Наука», 1969 | MR | MR

[2] D. Tz. Stoyanov, I. T. Todorov, J. Math. Phys., 9 (1968), 2146 | DOI | Zbl

[3] I. T. Todorov, R. P. Zaikov, J. Math. Phys., 10 (1969), 2014 | DOI | MR | Zbl

[4] A. I. Oksak, I. T. Todorov, Commun. Math. Phys., 14 (1969), 271 | DOI | MR | Zbl

[5] B. Schroer, J. Math. Phys., 5 (1964), 1361 | DOI | MR

[6] N. N. Meiman, ZhETF, 47 (1964), 1966 ; С. С. Хоружий, ДАН СССР, 177 (1967), 306 | MR

[7] A. Jaffe, Phys. Rev. Lett., 17 (1966), 661 ; Phys. Rev., 158 (1967), 1454 ; SIAM J. Appl. Math., 15 (1967), 1046 | DOI | DOI | DOI | MR | Zbl

[8] I. T. Grodsky, R. F. Streater, Phys. Rev. Lett., 20 (1968), 695 | DOI | Zbl

[9] A. I. Oksak, I. T. Todorov, Phys. Rev., D1 (1970), 3511

[10] I. M. Gelfand, N. Ya. Vilenkin, Obobschennye funktsii, vyp. 5, Fizmatgiz, 1962 | MR

[11] M. A. Naimark, Lineinye predstavleniya gruppy Lorentsa, Fizmatgiz, 1958 | MR

[12] V. S. Vladimirov, Metody teorii funktsii mnogikh kompleksnykh peremennykh, «Nauka», 1964 | MR

[13] R. F. Streater, J. Math. Phys., 3 (1962), 256 | DOI | MR | Zbl

[14] N. N. Bogolyubov, V. S. Vladimirov, Nauch. dokl. vysshei shkoly, 1958, no. 3, 26; 1959, No 2, 179 | MR

[15] P. G. Federbush, K. A. Johnson, Phys. Rev., 120 (1960), 1926 | DOI | MR | Zbl

[16] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, «Nauka», 1965 | MR

[17] W. Rühl, Nuovo Cimento, 68 (1970), 213 ; А. И. Оксак, Препринт ИФВЭ, 1971 | DOI | MR

[18] A. I. Oksak, I. T. Todorov, Commun. Math. Phys., 11 (1968), 125 | DOI | MR | Zbl

[19] A. I. Oksak, Communs. JINR, E2-5160, Dubna, 1970

[20] H. Bacry, J. Nuyts, Phys. Rev., 157 (1967), 1471 ; N. Wu, “On a class of infinite component fields free from usual diseases”, Tech. Report, no. 903, University of Maryland, 1968 | DOI

[21] H. D. I. Abarbanel, A strictly localizable field theory and the construction of resonant-symmetric scattering amplitudes, preprint, Princeton University, 1969

[22] A. Chodos, “Infinite-component field theory with a rising mass spectrum”, Phys. Rev., D1 (1970), 2937 | MR

[23] H. Leutwyler, Phys. Lett., 31B (1970), 214 | DOI

[24] R. P. Zaikov, Ch. D. Palev, Soobsch. OIYaI, R2-5305, Dubna, 1970