Two-point functions of local infinite-component fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 153-182

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicitly covariant technique is used to derive a representation for the two-point function $F_{\varphi\psi}(x-y)=\langle0|\varphi(x)\psi(y)|0\rangle$ which takes into account Lorentz covariance, the spectralcondition, and locality; the fields $\varphi$ and $\psi$ may transform in accordance with arbitrary irreducible representations of the proper Lorentz group. The method can also be applied to local nonrenormalizable theories (in which the two-point functions in momentum space may have a growth faster than polynomial). As a corollary it is proved (without any “technical assumptions”) that the mass spectrum in a theory of local infinite-component fields is infinitely degenerate with respect to the spin. By the same token, the well-known Grodsky–Streater “no-go” theorem is extended to nonrenormalizable theories.
@article{TMF_1971_7_2_a0,
     author = {A. I. Oksak and I. T. Todorov},
     title = {Two-point functions of local infinite-component fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--182},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/}
}
TY  - JOUR
AU  - A. I. Oksak
AU  - I. T. Todorov
TI  - Two-point functions of local infinite-component fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 153
EP  - 182
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/
LA  - ru
ID  - TMF_1971_7_2_a0
ER  - 
%0 Journal Article
%A A. I. Oksak
%A I. T. Todorov
%T Two-point functions of local infinite-component fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 153-182
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/
%G ru
%F TMF_1971_7_2_a0
A. I. Oksak; I. T. Todorov. Two-point functions of local infinite-component fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 2, pp. 153-182. http://geodesic.mathdoc.fr/item/TMF_1971_7_2_a0/