Integral representation of expansions in Wigner functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 35-44
Voir la notice de l'article provenant de la source Math-Net.Ru
A detailed derivation is given of the integral transformations (Teor. Mat. Fiz., 6, 42 (1971))
that relate series in Wigner functions to the corresponding power series. Some properties
of these integral transformations are studied. The problem of analytic continuation of expansions
in Wigner functions is reduced to the problem of analytic continuation of power series.
@article{TMF_1971_7_1_a4,
author = {V. V. Ezhela},
title = {Integral representation of expansions in {Wigner} functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {35--44},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a4/}
}
V. V. Ezhela. Integral representation of expansions in Wigner functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 35-44. http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a4/