Percus--Yevick equation for systems in external fields
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 121-128
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Percus–Yevick equation for the radial distribution function is generalized to the case of
external fields and an arbitrary form of the potential of the two-particle interaction. The resulting
equation is closed by means of the exact Bogolyubov equation for the single-particle
distribution function. An investigation is made of the asymptotic (for large distances) behavior
of the solution for the radial distribution function and a virial expansion is found for a lowdensity gas. The equation obtained is used to calculate the shift of the critical temperature
of a paramagnetic liquid under the influence of a weak magnetic field.
			
            
            
            
          
        
      @article{TMF_1971_7_1_a12,
     author = {N. P. Kovalenko and Yu. P. Krasnyi},
     title = {Percus--Yevick equation for systems in external fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/}
}
                      
                      
                    N. P. Kovalenko; Yu. P. Krasnyi. Percus--Yevick equation for systems in external fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/