Percus--Yevick equation for systems in external fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 121-128

Voir la notice de l'article provenant de la source Math-Net.Ru

The Percus–Yevick equation for the radial distribution function is generalized to the case of external fields and an arbitrary form of the potential of the two-particle interaction. The resulting equation is closed by means of the exact Bogolyubov equation for the single-particle distribution function. An investigation is made of the asymptotic (for large distances) behavior of the solution for the radial distribution function and a virial expansion is found for a lowdensity gas. The equation obtained is used to calculate the shift of the critical temperature of a paramagnetic liquid under the influence of a weak magnetic field.
@article{TMF_1971_7_1_a12,
     author = {N. P. Kovalenko and Yu. P. Krasnyi},
     title = {Percus--Yevick equation for systems in external fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/}
}
TY  - JOUR
AU  - N. P. Kovalenko
AU  - Yu. P. Krasnyi
TI  - Percus--Yevick equation for systems in external fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 121
EP  - 128
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/
LA  - ru
ID  - TMF_1971_7_1_a12
ER  - 
%0 Journal Article
%A N. P. Kovalenko
%A Yu. P. Krasnyi
%T Percus--Yevick equation for systems in external fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 121-128
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/
%G ru
%F TMF_1971_7_1_a12
N. P. Kovalenko; Yu. P. Krasnyi. Percus--Yevick equation for systems in external fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/