Percus–Yevick equation for systems in external fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 121-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Percus–Yevick equation for the radial distribution function is generalized to the case of external fields and an arbitrary form of the potential of the two-particle interaction. The resulting equation is closed by means of the exact Bogolyubov equation for the single-particle distribution function. An investigation is made of the asymptotic (for large distances) behavior of the solution for the radial distribution function and a virial expansion is found for a lowdensity gas. The equation obtained is used to calculate the shift of the critical temperature of a paramagnetic liquid under the influence of a weak magnetic field.
@article{TMF_1971_7_1_a12,
     author = {N. P. Kovalenko and Yu. P. Krasnyi},
     title = {Percus{\textendash}Yevick equation for systems in external fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--128},
     year = {1971},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/}
}
TY  - JOUR
AU  - N. P. Kovalenko
AU  - Yu. P. Krasnyi
TI  - Percus–Yevick equation for systems in external fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 121
EP  - 128
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/
LA  - ru
ID  - TMF_1971_7_1_a12
ER  - 
%0 Journal Article
%A N. P. Kovalenko
%A Yu. P. Krasnyi
%T Percus–Yevick equation for systems in external fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 121-128
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/
%G ru
%F TMF_1971_7_1_a12
N. P. Kovalenko; Yu. P. Krasnyi. Percus–Yevick equation for systems in external fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a12/

[1] J. K. Perkus, G. J. Yevick, Phys. Rev., 110 (1958), 1 | DOI | MR

[2] J. K. Perkus, Phys. Rev. Lett., 8 (1962), 462 | DOI

[3] L. Verlet, Physica, 30 (1964), 95 | DOI | MR

[4] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[5] I. Z. Fisher, Statisticheskaya teoriya zhidkostei, Fizmatgiz, 1961 | Zbl

[6] E. Lux, A. Münster, Z. Phys., 213 (1968), 46 | DOI

[7] A. E. Glauberman, Izv. AN SSSR, ser fiz., 22 (1958), 254 | Zbl

[8] F. M. Kuni, DAN SSSR, 179 (1968), 129

[9] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Fizmatgiz, 1959 | MR | Zbl

[10] A. V. Voronel, M. Sh. Giterman, ZhETF, 39 (1960), 1162

[11] A. V. Voronel, M. Sh. Giterman, ZhETF, 48 (1965), 1433

[12] I. Z. Fisher, Yu. P. Krasnyi, UFZh, 11 (1966), 103

[13] Yu. P. Krasnyi, UFZh, 11 (1966), 541

[14] A. V. Voronel, M. Sh. Giterman, ZhETF, 55 (1968), 2459

[15] M. E. Fisher, J. Math. Phys., 5 (1964), 944 | DOI | MR