Investigation of Bogolyubov's chain of equations for strongly correlated statistical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 106-120
Voir la notice de l'article provenant de la source Math-Net.Ru
General aspects of motion of a perfect gas are investigated on the basis of Bogolyubov's
chain of equations for the $s$-point distribution functions. It is shown that the kinetics of an
inhomogeneous perfect gas satisfies a special chain of equations which reduces to the classical
Boltzmann equation only in the particular case when there are no statistical constraints
in the macrospace. The investigation of this chain of equations enables one to approach
rigorously the question of the hydrodynamic equations for a continuous medium when there
are statistical constraints at different spatial points in the medium. In particular, it is
shown that the equilibrium state of a perfect gas differs strongly from the usual Maxwell
state if such constraints are present.
@article{TMF_1971_7_1_a11,
author = {V. N. Zhigulev},
title = {Investigation of {Bogolyubov's} chain of equations for strongly correlated statistical systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {106--120},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a11/}
}
TY - JOUR AU - V. N. Zhigulev TI - Investigation of Bogolyubov's chain of equations for strongly correlated statistical systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1971 SP - 106 EP - 120 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a11/ LA - ru ID - TMF_1971_7_1_a11 ER -
V. N. Zhigulev. Investigation of Bogolyubov's chain of equations for strongly correlated statistical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 106-120. http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a11/