Investigation of Bogolyubov's chain of equations for strongly correlated statistical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 106-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General aspects of motion of a perfect gas are investigated on the basis of Bogolyubov's chain of equations for the $s$-point distribution functions. It is shown that the kinetics of an inhomogeneous perfect gas satisfies a special chain of equations which reduces to the classical Boltzmann equation only in the particular case when there are no statistical constraints in the macrospace. The investigation of this chain of equations enables one to approach rigorously the question of the hydrodynamic equations for a continuous medium when there are statistical constraints at different spatial points in the medium. In particular, it is shown that the equilibrium state of a perfect gas differs strongly from the usual Maxwell state if such constraints are present.
@article{TMF_1971_7_1_a11,
     author = {V. N. Zhigulev},
     title = {Investigation of {Bogolyubov's} chain of equations for strongly correlated statistical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {106--120},
     year = {1971},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a11/}
}
TY  - JOUR
AU  - V. N. Zhigulev
TI  - Investigation of Bogolyubov's chain of equations for strongly correlated statistical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 106
EP  - 120
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a11/
LA  - ru
ID  - TMF_1971_7_1_a11
ER  - 
%0 Journal Article
%A V. N. Zhigulev
%T Investigation of Bogolyubov's chain of equations for strongly correlated statistical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 106-120
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a11/
%G ru
%F TMF_1971_7_1_a11
V. N. Zhigulev. Investigation of Bogolyubov's chain of equations for strongly correlated statistical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 7 (1971) no. 1, pp. 106-120. http://geodesic.mathdoc.fr/item/TMF_1971_7_1_a11/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, 1946 | MR

[2] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, IL, 1960 | MR

[3] Dzh. Ulenbek, Dzh. Ford, Lektsii po statisticheskoi mekhanike, «Mir», 1965

[4] M. A. Leontovich, ZhETF, 5:3 (1935), 4

[5] M. Kats, Veroyatnost i smezhnye voprosy v fizike, «Mir», 1965 | Zbl

[6] I. Prigozhin, Neravnovesnaya statisticheskaya mekhanika, «Mir», 1964

[7] V. N. Zhigulev, DAN SSSR, 161:5 (1965) | MR

[8] V. N. Zhigulev, Tr. TsAGI, 1969, no. 1135

[9] L. Boltsman, Lektsii po teorii gazov, Gostekhteorizdat, 1956

[10] V. V. Struminskii, DAN SSSR, 158:2 (1964) | MR

[11] G. F. Voznesenskii, Tr. TsAGI, 1970, no. 1245