On the Schrödinger equation with a random potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 415-424
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the ergodic properties of various quantities connected with a Schrödinger equation with a random potential. For the case when the potential is a metrically transitive (ergodic) random field with realizations that are bounded below it is shown that these quantities tend to nonrandom limits with probability 1 when the volume in which the equation is considered tends to infinity. It is shown that these limiting values are independent of the boundary conditions.
@article{TMF_1971_6_3_a9,
author = {L. A. Pastur},
title = {On~the~Schr\"odinger equation with a~random potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {415--424},
year = {1971},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a9/}
}
L. A. Pastur. On the Schrödinger equation with a random potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 415-424. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a9/
[1] I. M. Lifshits, UFN, 83 (1964), 617 | DOI | Zbl
[2] N. Mott, Elektrony v neuporyadochennykh strukturakh, «Mir», 1969
[3] N. Danford, D. Shvarts, Lineinye operatory, tom 1, «Mir», 1962
[4] M. Kats, Veroyatnost i smezhnye voprosy v fizike, «Mir», 1965 | Zbl
[5] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, tom II, «Mir», 1967 | MR
[6] D. Dub, Veroyatnostnye protsessy, IL, 1956 | MR
[7] B. L. Halperin, Phys. Rev., 139 (1965), A104 | DOI | MR
[8] M. M. Benderskii, L. A. Pastur, Matem. sb., 82:2 (6) (1970) | MR | Zbl