Algebraic approach to~the~solution of~a~one-dimensional model of~$N$ interacting particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 364-391
Voir la notice de l'article provenant de la source Math-Net.Ru
An algebraic apparatus based on increasing $B_p^+$ and decreasing $B_{p}$ operators $(p=2,3,\ldots,N)$ is developed to solve the one-dimensional model of N interacting particles studied
by Calogero [J. Math. Phys., 10, 2191, 2197 (1969)]. The determination of the wave functions
of the Schrödinger equation is then reduced to the operation of differentiation. Explicit
expressions are obtained for the operators $B_{p}$ and $B_p^+$ for $p=2,3,$ and 4. All the wave functions
for the case of four particles can be found by means of these expressions. For an arbitrary
number of particles this then yields an expression for two new series of wave functions
that depend on three quantum numbers. The operators of higher order can be found by
the same method
@article{TMF_1971_6_3_a6,
author = {A. M. Perelomov},
title = {Algebraic approach to~the~solution of~a~one-dimensional model of~$N$ interacting particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {364--391},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a6/}
}
TY - JOUR AU - A. M. Perelomov TI - Algebraic approach to~the~solution of~a~one-dimensional model of~$N$ interacting particles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1971 SP - 364 EP - 391 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a6/ LA - ru ID - TMF_1971_6_3_a6 ER -
A. M. Perelomov. Algebraic approach to~the~solution of~a~one-dimensional model of~$N$ interacting particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 364-391. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a6/