Equations of motion invariant under the group $\mathscr{P}(1,n)$. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 348-363
Cet article a éte moissonné depuis la source Math-Net.Ru
Equations are derived that are a generalization of the Dirac equation and are invariant under rotations and translations in a $(1+n)$-dimensional Minkowski space. A group-theoretical analysis of the equations is made. The $P$, $T$, and $C$ properties of these equations are studied.
@article{TMF_1971_6_3_a5,
author = {L. P. Sokur and W. I. Fushchych},
title = {Equations of motion invariant under the group $\mathscr{P}(1,n)$. {II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {348--363},
year = {1971},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/}
}
L. P. Sokur; W. I. Fushchych. Equations of motion invariant under the group $\mathscr{P}(1,n)$. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 348-363. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/
[1] V. I. Fuschich, TMF, 4 (1970), 360 | Zbl
[2] Yu. V. Novozhilov, I. A. Terentjev, J. Math. Phys., 9 (1968), 1517 | DOI | MR | Zbl
[3] Yu. P. Stepanovskii, Ukr. fiz. zh., 9 (1964), 1165
[4] M. M. Bakri, J. Math. Phys., 10 (1969), 289 | DOI | MR
[5] I. M. Gelfand, M. L. Tsetlin, DAN SSSR, 71 (1950), 1017 | Zbl
[6] V. I. Fushchich, Preprint ITF-69-17, Kiev, 1969