Equations of motion invariant under the group $\mathscr{P}(1,n)$. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 348-363
Voir la notice de l'article provenant de la source Math-Net.Ru
Equations are derived that are a generalization of the Dirac equation and are invariant under
rotations and translations in a $(1+n)$-dimensional Minkowski space. A group-theoretical
analysis of the equations is made. The $P$, $T$, and $C$ properties of these equations are studied.
@article{TMF_1971_6_3_a5,
author = {L. P. Sokur and W. I. Fushchych},
title = {Equations of motion invariant under the group $\mathscr{P}(1,n)$. {II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {348--363},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/}
}
TY - JOUR
AU - L. P. Sokur
AU - W. I. Fushchych
TI - Equations of motion invariant under the group $\mathscr{P}(1,n)$. II
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 1971
SP - 348
EP - 363
VL - 6
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/
LA - ru
ID - TMF_1971_6_3_a5
ER -
L. P. Sokur; W. I. Fushchych. Equations of motion invariant under the group $\mathscr{P}(1,n)$. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 348-363. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/