Equations of motion invariant under the group $\mathscr{P}(1,n)$. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 348-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equations are derived that are a generalization of the Dirac equation and are invariant under rotations and translations in a $(1+n)$-dimensional Minkowski space. A group-theoretical analysis of the equations is made. The $P$, $T$, and $C$ properties of these equations are studied.
@article{TMF_1971_6_3_a5,
     author = {L. P. Sokur and W. I. Fushchych},
     title = {Equations of motion invariant under the group $\mathscr{P}(1,n)$. {II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {348--363},
     year = {1971},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/}
}
TY  - JOUR
AU  - L. P. Sokur
AU  - W. I. Fushchych
TI  - Equations of motion invariant under the group $\mathscr{P}(1,n)$. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 348
EP  - 363
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/
LA  - ru
ID  - TMF_1971_6_3_a5
ER  - 
%0 Journal Article
%A L. P. Sokur
%A W. I. Fushchych
%T Equations of motion invariant under the group $\mathscr{P}(1,n)$. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 348-363
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/
%G ru
%F TMF_1971_6_3_a5
L. P. Sokur; W. I. Fushchych. Equations of motion invariant under the group $\mathscr{P}(1,n)$. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 348-363. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a5/

[1] V. I. Fuschich, TMF, 4 (1970), 360 | Zbl

[2] Yu. V. Novozhilov, I. A. Terentjev, J. Math. Phys., 9 (1968), 1517 | DOI | MR | Zbl

[3] Yu. P. Stepanovskii, Ukr. fiz. zh., 9 (1964), 1165

[4] M. M. Bakri, J. Math. Phys., 10 (1969), 289 | DOI | MR

[5] I. M. Gelfand, M. L. Tsetlin, DAN SSSR, 71 (1950), 1017 | Zbl

[6] V. I. Fushchich, Preprint ITF-69-17, Kiev, 1969