Theory of~band and bound states of~double triplet excitations in~molecular crystals.~I
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 433-444

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hamiltonian of double triplet excitations of a molecular crystal is obtained. The permittivity tensor of a molecular crystal is obtained in the range of frequency of double triplet excitations. This tensor is expressed in terms of the Fourier transform of the retarded Green's function, which is found from a system of algebraic equations. It is shown that in the electric dipole approximation the double triplet states are excited by light through the excitation of a virtual singlet exciton, which determines the polarization of the absorption in the given frequency range.
@article{TMF_1971_6_3_a11,
     author = {Yu. B. Gaididei and \`E. G. Petrov},
     title = {Theory of~band and bound states of~double triplet excitations in~molecular {crystals.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--444},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a11/}
}
TY  - JOUR
AU  - Yu. B. Gaididei
AU  - È. G. Petrov
TI  - Theory of~band and bound states of~double triplet excitations in~molecular crystals.~I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 433
EP  - 444
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a11/
LA  - ru
ID  - TMF_1971_6_3_a11
ER  - 
%0 Journal Article
%A Yu. B. Gaididei
%A È. G. Petrov
%T Theory of~band and bound states of~double triplet excitations in~molecular crystals.~I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 433-444
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a11/
%G ru
%F TMF_1971_6_3_a11
Yu. B. Gaididei; È. G. Petrov. Theory of~band and bound states of~double triplet excitations in~molecular crystals.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 3, pp. 433-444. http://geodesic.mathdoc.fr/item/TMF_1971_6_3_a11/