On~the~completeness of~a~system of~coherent states
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 213-224

Voir la notice de l'article provenant de la source Math-Net.Ru

Completeness is proved for some subsystems of a system of coherent states. The liaear dependence of states is investigated for von Neumann type subsystems. A detailed study is made of the case when a regular lattice on the complex $\alpha$ plane with cell area $S=\pi$ corresponds to the states of the system. It is shown that in this case there exists only one linear relationship between the coherent states. This relationship is equivalent to an infinite set of identities, of which the simplest can also be obtained by means of the transformation formulas for $\theta$ functions.
@article{TMF_1971_6_2_a6,
     author = {A. M. Perelomov},
     title = {On~the~completeness of~a~system of~coherent states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--224},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/}
}
TY  - JOUR
AU  - A. M. Perelomov
TI  - On~the~completeness of~a~system of~coherent states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 213
EP  - 224
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/
LA  - ru
ID  - TMF_1971_6_2_a6
ER  - 
%0 Journal Article
%A A. M. Perelomov
%T On~the~completeness of~a~system of~coherent states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 213-224
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/
%G ru
%F TMF_1971_6_2_a6
A. M. Perelomov. On~the~completeness of~a~system of~coherent states. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/