On the completeness of a system of coherent states
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 213-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Completeness is proved for some subsystems of a system of coherent states. The liaear dependence of states is investigated for von Neumann type subsystems. A detailed study is made of the case when a regular lattice on the complex $\alpha$ plane with cell area $S=\pi$ corresponds to the states of the system. It is shown that in this case there exists only one linear relationship between the coherent states. This relationship is equivalent to an infinite set of identities, of which the simplest can also be obtained by means of the transformation formulas for $\theta$ functions.
@article{TMF_1971_6_2_a6,
     author = {A. M. Perelomov},
     title = {On~the~completeness of~a~system of~coherent states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--224},
     year = {1971},
     volume = {6},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/}
}
TY  - JOUR
AU  - A. M. Perelomov
TI  - On the completeness of a system of coherent states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 213
EP  - 224
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/
LA  - ru
ID  - TMF_1971_6_2_a6
ER  - 
%0 Journal Article
%A A. M. Perelomov
%T On the completeness of a system of coherent states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 213-224
%V 6
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/
%G ru
%F TMF_1971_6_2_a6
A. M. Perelomov. On the completeness of a system of coherent states. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a6/

[1] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, «Nauka», 1964 | MR

[2] R. J. Glauber, Phys. Rev., 130, 2529 ; 131 (1963), 2766 | DOI | MR | DOI | MR

[3] J. R. Klauder, E. C. Sudarshan, Fundamentals of Quantum Optics, Benjamin, N. Y., 1968 | MR

[4] B. Ya. Zeldovich, A. M. Perelomov, V. S. Popov, ZhETF, 55 (1968), 589; 57 (1969), 196; Препринт ИТЭФ No 612; Препринт ИТЭФ No 618, 1968 | MR

[5] M. V. Terentev, Preprint ITEF No 773, 1970 | MR

[6] V. A. Fock, Z. Phys., 49 (1928), 339 | DOI | Zbl

[7] V. Bargmann, Commun. Pure Appl. Math., 14 (1961), 187 | DOI | MR | Zbl

[8] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, 1956

[9] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, t. 3, «Nauka», 1967 | MR

[10] R. Bellman, A brief introduction to theta functions, Holt, Rinehart and Winston, N. Y., 1961 | MR | Zbl

[11] N. K. Bari, Matem. 4, Uchenye zapiski MGU, 148, 1951, 69 | MR

[12] P. Cartier, “Algebraic groups and discontinuous subgroups”, Proc. Symp. Pure Math., 9, Providence, 1966, 361–383 | DOI | MR | Zbl

[13] I. M. Gelfand, M. I. Graev, I. I. Pyatetskii-Shapiro, Teoriya predstavlenii i avtomorfnye funktsii, «Nauka», 1966 | MR