Non-Wiener functional integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 194-212
Voir la notice de l'article provenant de la source Math-Net.Ru
A study is made of Feynman path integrals and some similar integrals which are used to solve
the initial-value problem for the Schrödinger equation. The $S$ matrix and the partition function
are found. The relationship between these integrals and operator symbols is found. In
particular, it is shown that functional integrals of this kind depend strongly on the adopted
approximations of finite multiplicity. The relation between the Feynman integral and the Wick
formula is discussed.
@article{TMF_1971_6_2_a5,
author = {F. A. Berezin},
title = {Non-Wiener functional integrals},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {194--212},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a5/}
}
F. A. Berezin. Non-Wiener functional integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 194-212. http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a5/