Dynamical theory of the vacuum
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 180-193
Cet article a éte moissonné depuis la source Math-Net.Ru
An $S$ matrix theory is constructed inwhichthe “free Lagrangian” $L_0$ may have a complicated structure. The Lagrangian $L_0$ determines the properties of the vacuum, which are described by Green's functions. Scattering is due to the interaction Lagrangian $L_\mathrm{int}$. If $L_\mathrm{int}=0$, then $S=1$, i.e., there is no scattering. A functional method is developed to determine the Green's functions and the $S$ matrix. This method yields an expansion of the $S$ matrix in powers of the function $\varphi (x)$. The coefficients of this expansion are scattering amplitudes. A generalized diagram technique is constructed to calculate the $S$ matrix. It is shown that if certain assumptions concerning the Lagrangian $L_0$ and $L_\mathrm{int}$ are made the $S$ matrix is unitary. and causal. Some physical applications of the theory are discussed.
@article{TMF_1971_6_2_a4,
author = {Yu. A. Gol'fand},
title = {Dynamical theory of~the~vacuum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {180--193},
year = {1971},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a4/}
}
Yu. A. Gol'fand. Dynamical theory of the vacuum. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 180-193. http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a4/
[1] C. N. Yang, D. Feldman, Phys. Rev., 79 (1950), 972 | DOI | MR | Zbl
[2] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR
[3] E. S. Fradkin, Trudy FIAN im. P. N. Lebedeva, XXIX, 1965
[4] Yu. A. Golfand, YaF, 8 (1968), 600
[5] S. Hori, Progr. Theor. Phys., 7 (1952), 578 | DOI | MR | Zbl
[6] S. Weinberg, Phys. Rev. Lett., 18 (1967), 188 | DOI
[7] J. Schwinger, Phys. Lett., 24B (1967), 473 | DOI
[8] C. N. Yang, R. L. Mills, Phys. Rev., 96 (1954), 191 | DOI | Zbl