Derivation of equations of motion for the magnetization of an antiferromagnet
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 294-300
Cet article a éte moissonné depuis la source Math-Net.Ru
The Heisenberg model of an antiferromagnet and the Zubarev–McLennan nonequilibrium statistical operator method are used to obtain an equation of motion for the magnetization. This has the same form as the Landau–Lifshitz equation.
@article{TMF_1971_6_2_a13,
author = {G. R\"opke},
title = {Derivation of~equations of~motion for~the~magnetization of~an~antiferromagnet},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {294--300},
year = {1971},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a13/}
}
G. Röpke. Derivation of equations of motion for the magnetization of an antiferromagnet. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 2, pp. 294-300. http://geodesic.mathdoc.fr/item/TMF_1971_6_2_a13/
[1] T. Nishikubo, H. Suzuki, T. Nagamiya, J. Phys. Soc. Japan, 27 (1969), 333 | DOI
[2] L. V. Kurbatov, V. K. Gurylev, FTT, 10 (1968), 1519
[3] C. A. Callen, J. Phys. Chem. Solids, 4 (1958), 256 | DOI
[4] O. A. Olkhov, B. N. Provotorov, Phys. Rev., 140A (1965), 1296 | DOI | MR
[5] E. G. Petrov, A. A. Yatsenko, FTT, 9 (1967), 2568
[6] D. N. Zubarev, V. P. Kalashnikov, TMF, 1 (1969), 137 ; Д. Н. Зубарев, ДАН СССР, 140 (1961), 92 ; 162, 532 ; (1965), 794 | MR | MR | Zbl | MR | MR
[7] L. A. Pokrovskii, DAN SSSR, 138 (1968), 806
[8] A. B. Harris, D. Kumar, B. I. Halperin, P. C. Hohenberg, Preprint MIT, 1970 | MR
[9] V. N. Genkin, V. M. Fain, ZhETF, 41 (1961), 1522
[10] K. Tani, Progr. Theor. Phys., 31 (1964), 335 | DOI