Application of functional integration to the derivation of the low-frequency asymptotic behaviour of Green's functions and kinetic equations for a nonideal Bose gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 1, pp. 90-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A form of perturbation theory is developed which enables one to calculate the Green's functions of a nonideal Bose gas below the Bose condensation point for low energies and momenta (in the hydrodynamic region). The functional integral method is used to find the diagrams of perturbation theory that make the main contribution to the hydrodynamic asymptotic behavior of the Green's functions. It is shown that summation of these diagrams reduces to solution of kinetic-type equations. The solution of these equations by the Chapman–Enskog–Hilbert method in the first approximation gives the Green's functions with poles corresponding to first and second sound. The second approximation enables one to express the damping in terms of the transport coefficients of first and second viscosity and the thermal conductivity. These coefficients are determined by the collision integral, which is obtained automatically in the process of summation of the diagrams.
@article{TMF_1971_6_1_a9,
     author = {V. N. Popov},
     title = {Application of~functional integration to~the~derivation of~the~low-frequency asymptotic behaviour {of~Green's} functions and kinetic equations for~a~nonideal {Bose~gas}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--108},
     year = {1971},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a9/}
}
TY  - JOUR
AU  - V. N. Popov
TI  - Application of functional integration to the derivation of the low-frequency asymptotic behaviour of Green's functions and kinetic equations for a nonideal Bose gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 90
EP  - 108
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a9/
LA  - ru
ID  - TMF_1971_6_1_a9
ER  - 
%0 Journal Article
%A V. N. Popov
%T Application of functional integration to the derivation of the low-frequency asymptotic behaviour of Green's functions and kinetic equations for a nonideal Bose gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 90-108
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a9/
%G ru
%F TMF_1971_6_1_a9
V. N. Popov. Application of functional integration to the derivation of the low-frequency asymptotic behaviour of Green's functions and kinetic equations for a nonideal Bose gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 1, pp. 90-108. http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a9/

[1] N. N. Bogolyubov, K voprosu o gidrodinamike sverkhtekuchei zhidkosti, Preprint OIYaI R-1395, 1963

[2] Z. Galasevich, Asimptoticheskoe vychislenie funktsii Grina v priblizhenii vyazkoi zhidkosti dlya sverkhtekuchikh boze-sistem, Preprint OIYaI R-1517, 1964

[3] P. C. Hohenberg, P. C. Martin, Ann. Phys., 34 (1965), 291 | DOI

[4] V. A. Krasnikov, DAN SSSR, 174 (1967), 1037

[5] S. T. Belyaev, ZhETF, 34, 417 ; (1958), 433 | Zbl | Zbl

[6] N. M. Hugengoltz, D. Pines, Phys. Rev., 116 (1959), 489 | DOI | MR

[7] V. N. Popov, L. D. Faddeev, ZhETF, 47 (1964), 1315

[8] V. N. Popov, ZhETF, 47 (1964), 1759; Вестник ЛГУ, 22:22 (1965), 58

[9] Li Chzhen-chzhun, DAN SSSR, 164 (1965), 1269 ; 169 (1966), 1054

[10] J. W. Kane, L. P. Kadanoff, J. Math. Phys., 6 (1965), 1902 | DOI | MR

[11] S. V. Peletminskii, V. D. Tsukanov, A. A. Yatsenko, Preprint ITF-68-51, Kiev, 1968

[12] E. S. Fradkin, Trudy FIAN, XXIX (1965), 7 | Zbl

[13] G. M. Eliashberg, ZhETF, 41 (1961), 1241

[14] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, IL, 1960 | MR

[15] I. M. Khalatnikov, Vvedenie v teoriyu sverkhtekuchesti, Nauka, 1965 | MR

[16] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, 1962 | MR | Zbl

[17] V. N. Popov, ZhETF, 58 (1970), 257