Coherent states and excitation of  a charged particle in a constant magnetic field by means of an electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 1, pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New integrals of motion, coherent states, the Green's function, and the amplitudes for a transition between the Landau levels are constructed for a nonrelativistic charged particle moving in a time-independent and spatially uniform magnetic field perpendicular to an alternating electric field. It is shown that the dynamic symmetry group of the problem is $U(2,1)$.
@article{TMF_1971_6_1_a6,
     author = {I. A. Malkin and V. I. Man'ko},
     title = {Coherent states and excitation of ~a~charged particle in~a~constant magnetic field by means of~an~electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {71--77},
     year = {1971},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a6/}
}
TY  - JOUR
AU  - I. A. Malkin
AU  - V. I. Man'ko
TI  - Coherent states and excitation of  a charged particle in a constant magnetic field by means of an electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1971
SP  - 71
EP  - 77
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a6/
LA  - ru
ID  - TMF_1971_6_1_a6
ER  - 
%0 Journal Article
%A I. A. Malkin
%A V. I. Man'ko
%T Coherent states and excitation of  a charged particle in a constant magnetic field by means of an electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1971
%P 71-77
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a6/
%G ru
%F TMF_1971_6_1_a6
I. A. Malkin; V. I. Man'ko. Coherent states and excitation of  a charged particle in a constant magnetic field by means of an electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 1, pp. 71-77. http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a6/

[1] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, N. Y., 1965 | MR

[2] R. J. Glauber, Phys. Rev. Letts., 10 (1963), 84 | DOI | MR

[3] E. Schrödinger, Naturwissenschaften, 14 (1926), 664 | DOI | Zbl

[4] V. A. Fock, Z. Phys., 49 (1928), 339 | DOI | Zbl

[5] V. Bargmann, Communs Pure and Appl. Math., 14 (1961), 187 | DOI | MR | Zbl

[6] Curruthers M. Nieto, Amer. J. Phys., 33 (1965), 537 | DOI | MR

[7] K. Husimi, Progr. Theor. Phys., 9 (1953), 381 | DOI | MR | Zbl

[8] G. C. Darwin, Proc. Roy. Soc., 117 (1928), 258 | DOI

[9] E. H. Kennard, Z. Phys., 44 (1927), 326 | DOI | Zbl

[10] I. A. Malkin, V. I. Manko, ZhETF, 55 (1968), 1014

[11] I. A. Malkin, V. I. Manko, D. A. Trifonov, Phys. Lett., 30A (1969), 414 ; ЖЭТФ, 58:2 (1970); Phys. Rev., D2:9 (1970) | DOI

[12] L. D. Landau, E. M. Lifshits, Teoriya polya, Fizmatgiz, 1967 | MR

[13] I. A. Malkin, V. I. Manko, DAN SSSR, 188:2 (1969); ЯФ, 8 (1968), 1264; Phys. Stat. Sol., 31 K (1969), 15 | DOI