Theory of kinetic equations for systems with bound states of particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 1, pp. 123-141
The derivation of kinetic equations for systems in which the particles can form bound states is considered. The treatment is based on the formal quantum theorY of scattering. A chain of integral equations in terms of Moeller wave operators is obtained, the principle of spatial correlation relaxation being used. The collision integral for particles in a bound state is found in the principal approximation in the density.
@article{TMF_1971_6_1_a11,
author = {S. V. Peletminskii},
title = {Theory of~kinetic equations for~systems with~bound states of~particles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {123--141},
year = {1971},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a11/}
}
S. V. Peletminskii. Theory of kinetic equations for systems with bound states of particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 6 (1971) no. 1, pp. 123-141. http://geodesic.mathdoc.fr/item/TMF_1971_6_1_a11/
[1] Yu. L. Klimontovich, ZhETF, 52 (1967), 1233; ЖЭТФ, 54 (1968), 135
[2] R. Nyuton, Teoriya rasseyaniya voln i chastits, «Mir», 1969 | MR
[3] N. N. Bogolyubov, Lektsii z kvantovoi statistiki, «Rad. shkola», 1949
[4] N. N. Bogolyubov, Preprint No 781, OIYaI, 1961 | MR
[5] S. V. Peletminskii, A. A. Yatsenko, Preprint ITF-68-5, Kiev, 1968
[6] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, GITTL, 1946 | MR
[7] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, 1958 | MR
[8] S. V. Peletminskii, A. A. Yatsenko, ZhETF, 53 (1967), 1327