On the $\alpha$-representation of Feynman integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 3, pp. 356-365
Cet article a éte moissonné depuis la source Math-Net.Ru
Graph theory is used to prove a formula for the integral over the internal momenta in the $\alpha$-representation of a Feynman integral. The distinctive feature of this formula is its explicit symmetry with respect to the choice of a tree in the graph.
@article{TMF_1970_5_3_a3,
author = {B. M. Stepanov},
title = {On the $\alpha$-representation of {Feynman} integrals},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {356--365},
year = {1970},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_5_3_a3/}
}
B. M. Stepanov. On the $\alpha$-representation of Feynman integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 3, pp. 356-365. http://geodesic.mathdoc.fr/item/TMF_1970_5_3_a3/
[1] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, 1957 | MR
[2] N. N. Bogoliubow, O. S. Parasiuk, Acta Math., 97 (1957), 227 | DOI | MR | Zbl
[3] V. S. Vladimirov, A. A. Logunov, Izv. AN SSSR, ser. matem., 23 (1959), 661 | MR | Zbl
[4] A. V. Astakhov, O. I. Zavyalov, A. D. Sukhanov, ZhETF, 52 (1967), 780
[5] J. S. R. Chisholm, Proc. Cambr. Phil. Soc., 48 (1952), 300 | DOI | MR | Zbl
[6] N. Nakanishi, Prog. Theor. Phys., 17 (1957), 401 | DOI | MR | Zbl
[7] A. V. Efremov, Preprint R-1242, OIYaI, 1963
[8] K. Berzh, Teoriya grafov i ee primeneniya, IL, 1962