Current structure of phenomenological Lagrangians
Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 3, pp. 321-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that phenomenological Lagrangians that are invariant with respect to a group $G$ are representable as products of currents when they are realized on homogeneous (with respect to transformations of $G$) irreducible symmetric spaces $G/H$. In the case of general homogeneous spaces the requirement that a phenomenological Lagrangian be representable as a product of currents can be satisfied only if the phenomenological constants are chosen in a definite manner. In certain cases this corresponds to an enlargement of the symmetry group of the original Lagrangian.
@article{TMF_1970_5_3_a0,
     author = {D. V. Volkov and V. D. Gershun and V. I. Tkach},
     title = {Current structure of phenomenological {Lagrangians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {321--329},
     year = {1970},
     volume = {5},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1970_5_3_a0/}
}
TY  - JOUR
AU  - D. V. Volkov
AU  - V. D. Gershun
AU  - V. I. Tkach
TI  - Current structure of phenomenological Lagrangians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1970
SP  - 321
EP  - 329
VL  - 5
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1970_5_3_a0/
LA  - ru
ID  - TMF_1970_5_3_a0
ER  - 
%0 Journal Article
%A D. V. Volkov
%A V. D. Gershun
%A V. I. Tkach
%T Current structure of phenomenological Lagrangians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1970
%P 321-329
%V 5
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1970_5_3_a0/
%G ru
%F TMF_1970_5_3_a0
D. V. Volkov; V. D. Gershun; V. I. Tkach. Current structure of phenomenological Lagrangians. Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 3, pp. 321-329. http://geodesic.mathdoc.fr/item/TMF_1970_5_3_a0/

[1] S. Weinberg, Phys. Rev. Lett., 18 (1967), 607

[2] J. Schwinger, Phys. Lett., 24B (1967), 473 | DOI

[3] J. Wess, B. Zumino, Phys. Rev., 163 (1967), 1727 | DOI

[4] S. Coleman, J. Wess, B. Zumino, Phys. Rev., 177 (1969), 2239 | DOI

[5] D. V. Volkov, Preprint ITF-69-75, Kiev, 1969

[6] E. Kartan, Geometriya grupp Li i simmetricheskie prostranstva, IL, 1949

[7] E. Kartan, Teoriya konechnykh nepreryvnykh grupp i differentsialnaya geometriya, izlozhennye metodom nepodvizhnogo repera, Izd-vo MGU, 1963

[8] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, «Mir», 1964 | Zbl

[9] H. Sugawara, Phys. Rev., 170 (1968), 1659 | DOI

[10] K. Bardakci, M. B. Halpern, Phys. Rev., 172 (1968), 1542 | DOI

[11] H. Sugawara, M. Joshimura, Phys. Rev., 173 (1968), 1419 | DOI

[12] Y. Nambu, Phys. Lett., 26B (1968), 626 | DOI