Sum rules for the ratio of the $\pi^{\pm} p$-scattering amplitudes
Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 2, pp. 235-243
Voir la notice de l'article provenant de la source Math-Net.Ru
Analyticity, unitarity, and crossing symmetry are used to obtain an exact integral relationship between $|f_{+}(E)/f_{-}(E)|$ and the difference of the phases of $f_{+}(E)$ and $f_{-}(E)$ and the analogous relationship between $|f_{+}(E)f_{-}(E)|$ and the sum of the phases of these amplitudes [$(f_{\pm}(E)$ are the $\pi^{\pm}-p$-forward scattering amplitudes].
Restrictions on $\displaystyle\int_{1}^{E}\ln\biggl|\frac{f_{+}(E')}{f_{-}(E')}\biggr|\,
\frac{dE'}{\sqrt{{E'}^2-1}}$ are found.
@article{TMF_1970_5_2_a5,
author = {V. Z. Baluni and Yu. S. Vernov},
title = {Sum rules for the ratio of the $\pi^{\pm} p$-scattering amplitudes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {235--243},
publisher = {mathdoc},
volume = {5},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1970_5_2_a5/}
}
TY - JOUR
AU - V. Z. Baluni
AU - Yu. S. Vernov
TI - Sum rules for the ratio of the $\pi^{\pm} p$-scattering amplitudes
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 1970
SP - 235
EP - 243
VL - 5
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_1970_5_2_a5/
LA - ru
ID - TMF_1970_5_2_a5
ER -
V. Z. Baluni; Yu. S. Vernov. Sum rules for the ratio of the $\pi^{\pm} p$-scattering amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 5 (1970) no. 2, pp. 235-243. http://geodesic.mathdoc.fr/item/TMF_1970_5_2_a5/